1	TITLE
2	Lactobacillus rhamnosus GG in experimental oral biofilms
3	exposed to different carbohydrate sources
4	AUTHORS
5	Qingru Jiang, QJ, Department of Oral and Maxillofacial Diseases,
6	University of Helsinki and Helsinki University Hospital, Finland
7	Veera Kainulainen, VK, Medical Nutrition Physiology,
8	Department of Pharmacology, Faculty of Medicine, University of
9	Helsinki, Finland
10	Iva Stamatova, IS, Department of Oral and Maxillofacial Diseases,
11	University of Helsinki and Helsinki University Hospital, Finland;
12	Faculty of Dental Medicine, Medical University of Plovdiv,
13	Bulgaria
14	Riitta Korpela, RK, Medical Nutrition Physiology, Department of
15	Pharmacology, Faculty of Medicine, University of Helsinki,
16	Finland
17	Jukka H Meurman, JHM, Department of Oral and Maxillofacial
18	Diseases, University of Helsinki and Helsinki University Hospital,
19	Finland
20	RUNNING HEAD
21	LGG in experimental oral biofilms
22	KEY WORDS
23	carbohydrate, probiotic, fluorescent in situ hybridization (FISH),
24	cross-feeding,
25	CORRESPONDING AUTHOR
26	Qingru Jiang, Department of Oral and Maxillofacial Diseases,
27	University of Helsinki and Helsinki University Hospital, P.O. Box
28	63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland
29	Phone: +358 440870301 E-mail: <u>qingru.jiang@helsinki.fi</u>

30 Disclosure Statement

31 The authors declare no conflicts of interests.

32 Abstract

33 Probiotic administration may favour caries prevention as recent research 34 has shown. This in vitro study aimed to investigate the growth of 35 Lactobacillus rhamnosus GG (LGG) in experimental biofilms exposed to 36 various carbohydrates, and also to assess its cariogenic potential. Multi-37 species experimental oral biofilms with/without LGG were grown with a 38 sole-carbohydrate source (fructose/glucose/lactose/sorbitol/sucrose). The 39 viable cells of LGG and structure of biofilms were examined after 64.5h 40 of incubation, and pH values of spent media were measured at 16.5h, 41 40.5h and 64.5h. Fermentation profiles of LGG in biofilm media were 42 assessed with study carbohydrate as the sole energy source. Our results 43 showed that LGG reached higher viable cell numbers with glucose and 44 sucrose in 64.5h multi-species experimental oral biofilms compared to 45 other carbohydrates. When LGG was incorporated in biofilms, no 46 distinct pH changes at all time points were observed under any of the 47 carbohydrates used; the pH values of spent media at each time point were 48 lower when lactose was used, compared to other carbohydrates. The 49 fermentation profiles of LGG in biofilm media were similar to its growth 50 in MRS (no obvious growth with lactose or sucrose). In conclusion, LGG 51 in our in vitro multi-species experimental oral biofilms was capable of 52 surviving and growing well in each carbohydrate source. LGG might not 53 have harmful effects on dental hard tissues. Another finding in our study 54 was that the lowest pH values were observed in the presence of lactose, 55 and the thickest biofilms were in sucrose.

56 Introduction

57 Dental caries still remains a global oral health burden worldwide. Caries 58 lesions in enamel and dentin are mainly initiated by the demineralization 59 of the tooth surface through bacterial acid production from sugar 60 [Mayanagi et al., 2017]. Sucrose, fructose, and glucose are considered 61 the most important sugars/carbohydrates in caries development and 62 progression [Marsh, 2003; Selwitz et al., 2007]. Acid-producing bacteria 63 commonly associated with dental caries are Streptococcus mutans 64 [Forssten et al., 2010], lactobacilli [Jiang et al., 2015], and Actinomyces 65 [Xiao et al., 2016], which are inherent residents of oral biofilms 66 developing on tooth surface. In the last decade, an increasing number of 67 studies have shown great interests in the prevention of caries with the 68 usage of probiotics [Laleman and Teughels, 2015; Jorgensen et al., 69 2016]. 70 Probiotics are 'live microorganisms that, when administered in adequate 71 amounts, confer a health benefit on the host' [Hill et al., 2014]. Among 72 the probiotics strains *Lactobacillus rhamnosus* GG (ATCC 53103, LGG) 73 is one of the most documented and widely used probiotic strains in the 74 world. Beneficial effects of LGG in general have been documented in 75 various clinical trials, including studies on diarrhoea, allergy, and liver 76 diseases [Floch et al., 2015]. 77 A fair number of clinical trials also suggest that both short- and long-78 term intake of probiotic could reduce S. mutans counts in saliva and/or 79 plaque [Meurman et al., 1995; Näse et al., 2001; Aminabadi et al., 2011; 80 Laleman et al., 2014; Tehrani et al., 2016]. However, a more pronounced 81 beneficial effect of saliva-derived lactobacilli was observed in subjects 82 without caries experience rather than in individuals with arrested or 83 active caries lesions [Simark-Mattsson et al., 2007]. There is still paucity 84 of evidence to establish relationship between probiotic administration 85 and decayed/missing/filled teeth (DMFt) scores [Simark-Mattsson et al., 86 2007; Gruner et al., 2016; Tehrani et al., 2016]. In addition, the safety of 87 probiotic use in the oral cavity has been a controversial topic. The genus 88 of Lactobacillus is known for their acidophilic properties, which in light 89 of the aetiology of dental caries may impose an inherent risk to dental

90	hard tissues. In the other hand, probiotics have proven safe both in vitro
91	and in vivo studies [Snydman, 2008]. Pham et al. [2011] have suggested
92	that LGG had no significant effect on cariogenic potential of a complex
93	saliva-derived biofilms. However, Schwendicke et al. [2014a; 2014b]
94	have reported that LGG and Bifidobacterium BB12 were found to
95	demineralize both enamel and dentin, and LGG even induced increased
96	demineralization compared to S. mutans mono-species biofilm alone.
97	Although there are limited aspects of positive effects for caries
98	prevention and insufficient safety studies, probiotics significantly
99	increased the chance of reducing S. mutans [Gruner et al., 2016] and
100	mutans streptococci are major pathogens of dental caries [Takahashi and
101	Nyvad, 2011], which leads the probiotic use in caries prevention as a hot
102	topic. Accordingly, the inhibitory activity of probiotic against common
103	oral pathogens (S. mutans, Candida albicans, Streptococcus sanguinis)
104	has been also tested in vitro [Soderling et al., 2011; Jiang et al., 2015;
105	Wu et al., 2015; Jiang et al., 2016] and its fermentation profiles have
106	been a subject of studies [Hedberg et al., 2008; Douillard et al., 2013].
107	However, there is limited evidence about the ability of LGG to establish
108	itself in the human mouth and to integrate and interact with oral biofilms.
109	Studies in this regard are needed and would contribute towards
110	understanding the mechanisms behind beneficial effects of probiotics
111	from the oral health perspective.
112	Our previous results affirmed that probiotic LGG was able to integrate
113	with experimental oral biofilms in vitro and differently affected the
114	growth of tested cariogenic strains [Jiang et al., 2016]. In the present
115	study, a sequel to our previous work, our aim was to investigate the
116	growth of LGG in experimental oral biofilms under various carbohydrate
117	conditions and to evaluate its potential risk for dental hard tissues in
118	terms of pH alterations to growth environment.
119	Materials and Methods
120	Strains, growth conditions, and inoculum preparation
121	LGG, from Valio Ltd., Helsinki, Finland was used as the probiotic strain
122	in our study. Biofilms in control group (5SP) were built with the pool of

123 five species of oral bacterial/yeast strains: *C. albicans* ATCC 10231, *S.*

124 mutans ATCC 27351, S. sanguinis ATCC 10556, Aggregatibacter 125 actinomycetemcomitans ATCC 43718, and Fusobacterium nucleatum 126 ATCC 25586. Group of 5SP with LGG (5SP+LGG) was the study group. All the strains were maintained as frozen stock at -80°C in 20% skim 127 128 milk (DifcoTM, BD, Becton, Dickinson and Company, Sparks, MD, 129 USA). Before each experiment, strains were cultivated twice on 130 respective agars (details are given in Table 1). Pure colony of each strain 131 was inoculated in 5 mL corresponding cultivation broth, and cultivated 132 anaerobically overnight at 37°C. 133 Bacterial and yeast strains were harvested by centrifugation for 10 min at 134 $3,000 \times g$, at room temperature, washed three times with 5 mL 0.9% 135 NaCl and re-suspended in biofilm medium base (BMB, biofilm medium 136 sugar free) adapted from Lemos et al. [2010]. The cell suspensions were 137 adjusted to an OD₄₉₀ of 0.130±0.010 (similar to McFarland standard No. 138 1. The cell concentrations of suspensions were 1.64×10^8 cells/mL for LGG, 3.33×10^7 cells/mL for *C. albicans*, 7.53×10^8 cells/mL for *S*. 139 140 *mutans*, 3.31×10^8 cells/mL for *S. sanguinis*, 4.44×10^9 cells/mL for *A*. 141 actinomycetemcomitans, and 1.72×10^8 cells/mL for F. nucleatum) by a 142 spectrophotometer (Multisan Plus, Labsystems, Helsinki, Finland, 143 measured by 200 µL each well in 96-well plate). Aliquots of strain 144 suspensions were then pooled for control group (5SP) and study group 145 (5SP+LGG), according to the group setup. 146 **Preparation of biofilms** 147 Biofilms were grown on saliva-coated hydroxyapatite (HA) discs 148 (Clarkson Chromatography Products, Inc., South Williamsport, PA, 149 USA). The discs were 7.0 mm in diameter and 1.8 mm high. The HA 150 discs were placed in a vertical position in disc holders bent from 151 orthodontic wire according to Lemos et al. [2010] with minor 152 modifications. The holders and the HA discs were autoclaved after 153 assembling. 154 To allow formation of a salivary pellicle, each HA disc was placed in a 155 well of a sterile 24-well polystyrene cell culture plate, fully immersed 156 and incubated with 1.8 mL of processed saliva and by gentle shaking for 157 4h at room temperature. Whole saliva was collected from 21 healthy

Strain	Origin	Agar/Broth	Growth conditions
Lactobacillus rhamnosus GG ATCC 53103 (LGG)	Valio Ltd., Helsinki, Finland	de Man, Rogosa and Sharpe (MRS)	24h, 37°C, 5% CO ₂
<i>Candida albicans</i> ATCC 10231	American Type Culture Collection (ATCC)	Sabouraud	24h, 37°C, air
Streptoccus mutans ATCC 27351	ATCC	Brain Heart Infusion (BHI)	24h, 37°C, 5% CO ₂
Streptococcus sanguinis ATCC 10556	ATCC	BHI	24h, 37°C, 5% CO ₂
Aggregatibacter actinomycetemcomitans ATCC 43718	ATCC	BHI	24h, 37°C, 5% CO ₂
Fusobacterium nucleatum ATCC 25586	ATCC	Brucella	48h, 37°C, in anaerobic condition (mixture of 0.2% O ₂ , 5% CO ₂ , 9.9% H ₂ , 84.9% N ₂)

Table 1. Strains and the growth conditions.

158	volunteers after their informed consent (men, n=10, women, n=11; mean
159	age 35±8). Pregnancy, gingival bleeding, history of antibiotic
160	administration in the past 2 weeks, and eating, drinking and oral hygiene
161	procedures 1.5 hour prior saliva collection were the main exclusion
162	criteria. The processed saliva was prepared and pasteurized according to
163	Guggenheim et al. [2001]. The efficacy of pasteurization was assessed by
164	plating processed saliva samples onto Brucella agar (BBL TM , BD,
165	Becton, Dickinson and Company, Sparks, MD, USA, with vitamin K3 10
166	ug/mL, hemin 5 ug/mL, and 5% defibrinated horse blood from bio
167	TRADING, Mijdrecht, the Netherlands), and cultivated either aerobically
168	or anaerobically for 3 days, until no colonies were observed.
169	After the saliva-coating step, HA discs were transferred to a new 24-well
170	plate containing 2.5 mL biofilm culture medium and 0.3 mL pooled
171	strains in each well. Six biofilm culture media were used in this study,
172	namely BMB with water (BM-negative), with fructose (BM-fructose),
173	with glucose (BM-glucose), with lactose (BM-lactose), with sorbitol
174	(BM-sorbitol), and with sucrose (BM-sucrose). The concentration of
175	carbohydrate was 3.6 g/L (i.e. 20 mM glucose/fructose/sorbitol or 10
176	mM lactose/sucrose). Then the plates with HA discs and broth media
177	were incubated anaerobically at 37°C for 64.5 h in dark. Broth media
178	were renewed at 16.5h and 40.5h as the following steps: the discs were
179	first washed by dipping twice into 2.8 mL physiological saline and then
180	transferred to a new 24-well plate containing 2.8 mL fresh broth media
181	per well.
182	Examination of LGG cells
183	After 64.5h cultivation and two dip washes in physiological saline, each
184	HA disc was transferred into a sterile 50 mL polypropylene tube
185	containing 5 mL of physiological saline at room temperature, and
186	vortexed (by Vortex-Genie® 2 mixer, Scientific industries, Inc, Bohemia,
187	N.Y., USA) vigorously for 2 min, and sonicated (by Wagner instrusonic,
188	PS-Terä Oy, Lahti, Finland, 90/180 watts) for 5 sec at room temperature.
189	Serial dilutions of the sonicated cells were cultivated on de Man, Rogosa

and Sharpe (MRS; Lab M Ltd, Bury, UK) agar plates at 37° C in 5% CO₂

- 191 for 72h. Colony forming units (CFU) of LGG were counted based on its
- 192 colonial morphology on MRS.
- 193 Measurement of pH values of spent culture media
- 194 The pH of spent media was measured with a pH meter (pH 1000 L,
- 195 pHenomenal[®], VWR International, Rador, PA, USA) at all three time
- 196 points, when the HA discs were transferred into fresh media or
- 197 physiological saline and when the spent media were replaced. The spent
- 198 media were centrifuged for 10 min, $3,000 \times g$ prior to pH measurement
- 199 from the supernatant.
- 200 Structural analysis of biofilms
- 201 The biofilm structure was analysed with the method of fluorescence in
- situ hybridization (FISH).
- 203 For FISH analysis, the staining was performed mainly according to the
- 204 protocol established by Thurnheer et al. [2004]. In short, 64.5h biofilms
- were fixed immediately with 4% (w/v) paraformaldehyde for 1h at 4° C,
- permeabilized for 30 min at 37°C by exposure to the mixture (46200
- 207 U/ml or 1 mg/ml lysozyme, 98 mM Tris/HCl, 5 mM EDTA, pH 7.5.
- 208 Extra 100 U/mL mutanolysin was added for Group 5SP+LGG), pre-
- 209 hybridized in hybridization buffer (0.9M NaCl, 20mM Tris/HCl, 30%
- Formamide, 0.01% SDS) at 46°C for 15 min, and followed by
- 211 hybridization for 3h with fluorescently labelled oligonucleotides
- 212 (Lcas467-Cy3 probe binds LGG: 5'-CCGTCACGCCGACAACAG-3'
- 213 [Ardita et al., 2014], and MUT590-Cy5 probe binds S. mutans: 5'-
- 214 ACTCCAGACTTTCCTGAC-3' [Quevedo et al., 2011]). After
- 215 hybridization, biofilms were washed twice in wash buffer (20mM
- 216 Tris/HCl, 5mM EDTA, 102 mM NaCl, 0.01% SDS) and stained with
- Hoechst (to stain the rest of the strains = S. sanguinis + C. albicans + A.
- 218 *actinomycetemcomitans* + *F. nucleatum*) for 5min in dark.
- 219 Afterwards all the samples were embedded in Mowiol [Thurnheer et al.,
- 220 2006] overnight at room temperature and were examined with an
- 221 inverted Confocal Laser Scanning Microscopy (CLSM) Leica SP8 (Leica
- 222 Microsystems Gmbh Wetzlar, Germany). CLSM images were obtained
- 223 with a ×40 water immersion objective. Each biofilm was scanned at
- randomly selected areas as a series of vertical optical sections, each

- 225 section was 0.50 µm thick. Digital images were processed with Fiji 226 [Schneider et al., 2012]. 227 Fermentation profiles of LGG in biofilm medium with sole 228 carbohydrate source. 229 The overnight cultures of LGG were harvested by centrifugation for 230 10min at 3,000 \times g, at room temperature, washed three times with 5 mL 231 0.9% NaCl and re-suspended in BM-negative medium. The suspensions 232 were adjusted to an optical density at 490 nm (OD₄₉₀) of 0.360 ± 0.010 . 233 The adjusted suspension (200µL) was inoculated into 5mL aliquots of 234 BM-negative, fructose, glucose, lactose, sorbitol, or sucrose media, 235 respectively, and cultivated in 5% CO₂ at 37°C. The growth was 236 measured by observing the changes of OD_{490} at 0, 4, 6, 20, 24 and 48h 237 incubation. 238 **Statistical analysis** 239 Data are shown as means \pm standard deviations. Statistical analyses were 240 performed with IBM SPSS Statistics version 22 for Windows. One-way 241 ANOVA and Dunnett's test were used to determine statistical 242 significance in Figure 1, and Duncan's test in Figure 2. A difference was 243 deemed significant at P<0.05 or ***P<0.001. Log10 transformation of 244 the viable cell numbers was made before the statistical analysis. 245 Results 246 Growth of LGG in biofilms 247 The viable cell numbers of LGG in 64.5h experimental oral biofilms 248 cultured with the five sole-carbohydrate media are presented in Figure 1. 249 LGG was able to use all the supplemented carbohydrates for growth and 250 viable cells of LGG were detected in all the biofilms, including the 251 negative control group. LGG grew to higher number when the 252 carbohydrate source was glucose $(2.33\pm1.60 \times 10^6 \text{ CFU/disc})$ and sucrose 253 $(2.29\pm0.99\times10^{6} \text{ CFU/disc})$ compared with the other carbohydrate 254 sources. These numbers were significantly (P < 0.001) higher than that in 255 the negative control group $(3.54\pm2.18 \times 10^3 \text{ CFU/disc})$. Among the study 256 groups, the lowest viable cell number of LGG was measured when sorbitol was used (1.55 \pm 0.58 \times 10⁵ CFU/disc). In the presence of lactose 257
 - 9

258	and fructose, the numbers of LGG were $9.67\pm8.12\times10^5$ CFU/disc and
259	$8.88\pm6.39 \times 10^5$ CFU/disc, respectively.
260	The highest viable cell numbers of LGG in the experimental oral
261	biofilms were observed in the presence of glucose, followed by sucrose,
262	lactose, fructose, sorbitol and negative control.
263	pH values of spent media
264	The pH values of spent media (Figure 2) were measured when new broth
265	media were replaced or at the end of cultivation, i.e. at 16.5h, 40.5h and
266	64.5h, respectively.
267	The pH values of spent media at 16.5h were above 5. The presence of
268	LGG did not clearly change the pH values of the spent media when
269	comparing the groups of 5SP+LGG and 5SP which had been cultivated
270	with each carbohydrate studied and at each time point.
271	The pH values in the carbohydrate-supplemented groups were
272	significantly lower than that in the negative group ($P < 0.05$).
273	The lowest pH values in 5SP+LGG and 5SP groups at all time points
274	(respectively at 16.5h: 5.34 \pm 0.09 and 5.34 \pm 0.09, at 40.5h: 4.79 \pm 0.10 and
275	4.81 ± 0.12 , at 64.5h: 4.72 ± 0.09 and 4.75 ± 0.14) were measured from the
276	subgroup BM-lactose.
277	Biofilms structure
278	All the microbes in 64.5h biofilms grew out as layer structures (Figure
279	3), and hemispherical shape structures were observed in the presence of
280	sucrose.
281	From column A, LGG was able to be detected in 64.5h biofilms of group
282	5SP+LGG under all the tested carbohydrate conditions.
283	Comparing columns B and C with each carbohydrate, less microbes
284	(both red and blue channels) were adhered and developed in group
285	5SP+LGG than in group 5SP. Also the first layer of biofilms of group
286	5SP was mainly composed of S. mutans, but this layer in group
287	5SP+LGG was mostly mixed up with the rest of the strains.
288	Planktonic cell growth
289	In order to compare the growth of LGG in the experimental oral biofilms
290	and as planktonic cells, we also tested the fermentation profiles of LGG
291	in biofilm broth media with the five sole-carbohydrates in 48h. Figure 4

292	shows that at the end of cultivation LGG grew to highest optical density
293	in subgroups BM-glucose and BM-fructose, and higher in BM-sorbitol.
294	No obvious increases of optical density were found in BM-negative,
295	BM-lactose, and BM-sucrose, respectively.
296	The highest growth of LGG in the biofilm broth media was in the
297	presence of glucose, followed by fructose, sorbitol, negative control, and
298	lactose, while least growth was observed in the presence of sucrose.
299	Discussion
300	This in vitro study aimed to investigate LGG growth in experimental oral
301	biofilms simulating oral conditions and, secondly, to evaluate the
302	potential of this probiotic strain in decreasing pH in its environment in
303	the perspective of dental caries. We built 64.5h multi-species
304	experimental oral biofilms cultivated with fructose, glucose, lactose,
305	sorbitol, and sucrose. Our results demonstrate that LGG can grow to
306	higher viable cell numbers with glucose and sucrose in these multi-
307	species biofilms compared to the other carbohydrates. Furthermore, the
308	addition of LGG did not decrease the pH values in the experimental
309	model systems.
310	The growth of LGG in the multispecies experimental oral biofilms was
311	different from its growth in mono-species biofilms or as planktonic cells.
312	We found that LGG in our study was able to survive and grow well in a
313	wider spectrum of carbohydrate sources. The growth of LGG as
314	planktonic cells in the biofilm broth media was similar to that in MRS
315	[Jiang et al., 2015], showing low or no capability to utilize sucrose or
316	lactose. But LGG in the multispecies experimental oral biofilms did
317	show better growth in the presence of sucrose or lactose. In the study of
318	Hedberg et al. [2008] LGG was found to ferment sucrose or lactose only
319	after 48h and 72h cultivation. Another possible reason to explain its
320	growth in sucrose and lactose in our experiment is that S. mutans [Moye
321	et al., 2014], S. sangunis [Tanzer et al., 1971; Yamada et al., 1985]
322	and/or C. albicans [Binkley et al., 2014] when present in the biofilms
323	could hydrolyse these two carbohydrates to fructose, glucose, and
324	galactose. Then fructose and glucose could be easily utilised by LGG
325	leading to higher viable cell numbers observed.

326	One of our important findings is that the growth of LGG in sucrose or
327	lactose with cross-feeding is here demonstrated. Whenever one organism
328	uses metabolites produced by another organism as energy or nutrient
329	sources, it is called cross-feeding [Estrela et al., 2012]. A recent study
330	from Pan et al. [2016] has demonstrated that cooperative cross-feeding
331	between different bacterial species is favoured in structured
332	environments such as bacterial biofilms, suggesting that this type of
333	interactions might be common in natural bacterial communities.
334	Apparently, the nutritional interaction in the present study was beneficial
335	regarding the growth of LGG.
336	In addition, when glucose was the sole carbohydrate source, the viable
337	cell number of LGG in the multispecies experimental oral biofilms
338	$(2.33\pm1.60 \times 10^6 \text{ CFU/disc})$ was more than seven times higher than the
339	viable cell number of LGG in its mono-species biofilms (3.16 \pm 1.80 \times 10 ⁵
340	CFU/disc) [Jiang et al., 2016]. This finding could be explained by the
341	theory that microbial consortia actively attempt to become poly-
342	microbial in order to gain resistance and better survival ability [Wolcott
343	et al., 2013].
344	In our series LGG showed no cariogenic potential since the pH values of
344 345	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured.
344 345 346	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for
344 345 346 347	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012].
344 345 346 347 348	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three
344 345 346 347 348 349	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L
344 345 346 347 348 349 350	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L phosphate, which prevented any drastic pH change; 2) the acids
344 345 346 347 348 349 350 351	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L phosphate, which prevented any drastic pH change; 2) the acids produced by LGG were utilized by the other micro-organisms and thus
344 345 346 347 348 349 350 351 352	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L phosphate, which prevented any drastic pH change; 2) the acids produced by LGG were utilized by the other micro-organisms and thus did not affect the environment; and 3) LGG cells comprised only a small
344 345 346 347 348 349 350 351 352 353	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L phosphate, which prevented any drastic pH change; 2) the acids produced by LGG were utilized by the other micro-organisms and thus did not affect the environment; and 3) LGG cells comprised only a small part in the biofilms, so the acids generated by them did not decrease the
344 345 346 347 348 349 350 351 352 353 354	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L phosphate, which prevented any drastic pH change; 2) the acids produced by LGG were utilized by the other micro-organisms and thus did not affect the environment; and 3) LGG cells comprised only a small part in the biofilms, so the acids generated by them did not decrease the pH in the whole model system.
344 345 346 347 348 349 350 351 352 353 354 355	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L phosphate, which prevented any drastic pH change; 2) the acids produced by LGG were utilized by the other micro-organisms and thus did not affect the environment; and 3) LGG cells comprised only a small part in the biofilms, so the acids generated by them did not decrease the pH in the whole model system. Commercial probiotic products are now widely available, so safety issues
344 345 346 347 348 349 350 351 352 353 354 355 356	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L phosphate, which prevented any drastic pH change; 2) the acids produced by LGG were utilized by the other micro-organisms and thus did not affect the environment; and 3) LGG cells comprised only a small part in the biofilms, so the acids generated by them did not decrease the pH in the whole model system. Commercial probiotic products are now widely available, so safety issues are raising up. Numerous in vitro and in vivo studies have been
344 345 346 347 348 349 350 351 352 353 354 355 356 357	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L phosphate, which prevented any drastic pH change; 2) the acids produced by LGG were utilized by the other micro-organisms and thus did not affect the environment; and 3) LGG cells comprised only a small part in the biofilms, so the acids generated by them did not decrease the pH in the whole model system. Commercial probiotic products are now widely available, so safety issues are raising up. Numerous in vitro and in vivo studies have been published to address the consumption of probiotics from various
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358	In our series LGG showed no cariogenic potential since the pH values of the spent media at 16.5h were not decreased when LGG was co-cultured. These pH values did not drop close to or below the critical levels for dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. This phenomenon in the present study might be explained by three possible ways: 1) The biofilm medium contained 68.5 mmol/L phosphate, which prevented any drastic pH change; 2) the acids produced by LGG were utilized by the other micro-organisms and thus did not affect the environment; and 3) LGG cells comprised only a small part in the biofilms, so the acids generated by them did not decrease the pH in the whole model system. Commercial probiotic products are now widely available, so safety issues are raising up. Numerous in vitro and in vivo studies have been published to address the consumption of probiotics from various perspectives. For example, Hibberd et al. [2014] have reported that in a

360 older with no serious adverse events. And a two-week consumption of 361 Lactobacillus reuteri and LGG appeared not to influence the 362 acidogenicity of plaque of young adults [Marttinen et al., 2012]. 363 Stamatova et al. [2007] have proved that intake of Lactobacillus 364 bulgaricus strains is not anticipated to exert any deleterious effects on 365 the regulatory enzymes and structure of the host extracellular matrix. 366 However, some reports do not agree with the above conclusions. 367 Probiotics strains, for example, Lactobacillus salivarius strains, LGG, 368 BB12 have been reported to show ability to induce caries and mineral 369 loss in vivo and in vitro [Matsumoto et al., 2005; Pham et al., 2009; 370 Schwendicke et al., 2014a; Schwendicke et al., 2014b]. These 371 contradictory reports urge more relevant future studies to clarify the 372 safety issue. Meanwhile the effects of probiotics are strain-dependant, it 373 is crucial to select no cariogenic risk strains as oral probiotics. 374 In the present study, it was interesting to find out that the pH values of 375 the spent media were lowest in the presence of lactose. Lactose is one of 376 the major sugars in dairy products and its fermentation can potentially 377 demineralize dental hard tissues. Traditionally, sucrose is regarded the 378 most cariogenic sugar [Boonyanit et al., 2011]. In our study sucrose in 379 the growth medium indeed resulted in low pH values of the spent media 380 but not as low pH values as lactose. This finding might be used to advise 381 consumers to choose lactose-free probiotic products. However, it should 382 be kept in mind that milk, for example, has a strong buffering capacity 383 [Salaun et al., 2005]. Thus, studies in clinical setting are called for before 384 drawing any further conclusion in this respect. 385 Although lactose led to a lowest pH, sucrose resulted in thicker biofilms, 386 which agrees with and proofs that sucrose is the most cariogenic sugar 387 [Gupta et al., 2013]. And the biofilms' structure implies that S. mutans 388 colonized the saliva-coated HA surface earlier than the rest of the strains 389 and the addition of LGG affected the adherence of S. mutans, which are 390 consistent with previous observations [Li et al., 2004; Jiang et al., 2016]. 391 These results all prove that this biofilm model is effective and repeatable. 392 One of the strengths of this study is to involve multi-species to build 393 biofilms to mimic a complex ecosystem, but it is also a limitation.

395 various microbial communities, and there are great inter-individual 396 variations [Sato et al., 2015]. Also the tested strains are all reference 397 strains. Hence the findings in this study need to be further confirmed and 398 ideally in a clinical setting. 399 Within the limitations of this study, LGG in our in vitro multi-species 400 experimental oral biofilms was capable of surviving and growing well 401 with each of the studied carbohydrate sources. The lowest pH values 402 were observed in the presence of lactose. 403 Acknowledgements 404 Many thanks to Saija Perovuo for her help in the laboratory. Dr. Sok-Ja 405 Kim Janket from Boston University is thanked for her guidance with the 406 statistical analyses. Dr. Thurnheer Thomas from University of Zurich is

Because the dynamic oral cavity contains far more species to form

- 407 thanked for the FISH protocol. Biomedicum Imaging Unit (BIU) from
- 408 Faculty of Medicine, University of Helsinki is thanked for the technical
- 409 assistance and microscopy services. Professor Seppo Salminen from
- 410 University of Turku is thanked for his critical comments in the
- 411 preparation of the manuscript. The study was funded by the Department
- 412 of Oral and Maxillofacial Diseases Scientific Research Laboratory,
- 413 University of Helsinki. QJ was funded by the China Scholarship Council
- 414 (201206310016) and Selma and Maja-Lisa Selander's Fund for Research
- 415 in Odontology. VK was funded by the Academy of Finland (grant No.
- 416 285632). The funders had no role in the study design, data collection and
- 417 analyses, decision to publish, or preparation of the manuscript.
- 418 Author Contributions
- 419 All authors conceived and designed the experiments. QJ performed the
- 420 experiments, analysed the data and drafted the manuscript. VK, RK, IS,
- 421 JHM revised the manuscript. All authors read and approved the final
- 422 manuscript.
- 423

References

425	Aminabadi NA, Erfanparast L, Ebrahimi A, Oskouei SG: Effect of
426	chlorhexidine pretreatment on the stability of salivary
427	lactobacilli probiotic in six- to twelve-year-old children: a
428	randomized controlled trial. Caries Res 2011;45:148-154.
429	Ardita CS, Mercante JW, Kwon YM, Luo LP, Crawford ME, Powell DN,
430	Jones RM, Neish AS: Epithelial adhesion mediated by pilin SpaC
431	is required for Lactobacillus rhamnosus GG-induced cellular
432	responses. Appl Environ Microbiol 2014;80:5068-5077.
433	Binkley J, Arnaud MB, Inglis DO, Skrzypek MS, Shah P, Wymore F,
434	Binkley G, Miyasato SR, Simison M, Sherlock G: The Candida
435	Genome Database: the new homology information page
436	highlights protein similarity and phylogeny. Nucleic Acids Res.
437	42 (Database issue): D711-6. URL:
438	http://pathway.candidagenome.org/CALBI/NEW-
439	IMAGE?type=PATHWAY&object=PWY-621; in., 2014.
440	Boonyanit T, Sroisiri T, Doan Minh T: Fermentation of various sugars and
441	sugar substitutes by oral microorganisms. Asian Pac J Trop Med
442	2011;1:S258-S260.
443	Dahlén G, Fiehn N-E, Olsen I, Dahlgren U: Oral microbiology and
444	immunology. Copenhagen, Denmark, Munksgaard Danmark,
445	2012.
446	De Filippis F, Vannini L, La Storia A, Laghi L, Piombino P, Stellato G,
447	Serrazanetti DI, Gozzi G, Turroni S, Ferrocino I, Lazzi C, Di Cagno
448	R, Gobbetti M, Ercolini D: The same microbiota and a potentially
449	discriminant metabolome in the saliva of omnivore, ovo-lacto-
450	vegetarian and vegan individuals. PLoS One 2014;9:e112373.
451	Douillard FP, Ribbera A, Jarvinen HM, Kant R, Pietila TE, Randazzo C,
452	Paulin L, Laine PK, Caggia C, von Ossowski I, Reunanen J,
453	Satokari R, Salminen S, Palva A, de Vos WM: Comparative
454	genomic and functional analysis of Lactobacillus casei and
455	Lactobacillus rhamnosus strains marketed as probiotics. Appl
456	Environ Microbiol 2013;79:1923-1933.
457	Estrela S, Trisos CH, Brown SP: From metabolism to ecology: cross-
458	feeding interactions shape the balance between polymicrobial
459	conflict and mutualism. Am Nat 2012;180:566-576.
460	Floch MH, Walker WA, Sanders ME, Nieuwdorp M, Kim AS, Brenner DA,
461	Qamar AA, Miloh TA, Guarino A, Guslandi M, Dieleman LA,
462	Ringel Y, Quigley EMM, Brandt LJ: Recommendations for
463	probiotic use-2015 update proceedings and consensus opinion.
464	J Clin Gastroenterol 2015;49:S69-S73.
465	Forssten SD, Bjorklund M, Ouwehand AC: Streptococcus mutans, caries
466	and simulation models. Nutrients 2010;2:290-298.
467	Gruner D, Paris S, Schwendicke F: Probiotics for managing caries and
468	periodontitis: systematic review and meta-analysis. J Dent
469	2016;48:16-25.

470	Guggenheim B, Giertsen E, Schupbach P, Shapiro S: Validation of an in
471	vitro biofilm model of supragingival plaque. J Dent Res
472	2001;80:363-370.
473	Gupta P, Gupta N, Pawar AP, Birajdar SS, Natt AS, Singh HP: Role of
474	sugar and sugar substitutes in dental caries: a review. ISRN Dent
475	2013;2013:519421.
476	Hedberg M, Hasslof P, Sjostrom I, Twetman S, Stecksen-Blicks C: Sugar
477	fermentation in probiotic bacteria - an in vitro study. Oral
478	Microbiol Immunol 2008;23:482-485.
479	Hibberd PL, Kleimola L, Fiorino AM, Botelho C, Haverkamp M,
480	Andreyeva I, Poutsiaka D, Fraser C, Solano-Aguilar G, Snydman
481	DR: No evidence of harms of probiotic Lactobacillus rhamnosus
482	GG ATCC 53103 in healthy elderly-a phase I open label study to
483	assess safety, tolerability and cytokine responses. PLoS One
484	2014;9:e113456.
485	Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L,
486	Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME: The
487	International Scientific Association for Probiotics and Prebiotics
488	consensus statement on the scope and appropriate use of the
489	term probiotic. Nat Rev Gastro Hepat 2014;11:506-514.
490	Jiang Q, Stamatova I, Kainulainen V, Korpela R, Meurman JH:
491	Interactions between Lactobacillus rhamnosus GG and oral
492	micro-organisms in an in vitro biofilm model. BMC Microbiol
493	2016;16:149.
494	Jiang Q, Stamatova I, Kari K, Meurman JH: Inhibitory activity in vitro of
495	probiotic lactobacilli against oral Candida under different
496	fermentation conditions. Benef Microbes 2015;6:361-368.
497	Jorgensen MR, Castiblanco G, Twetman S, Keller MK: Prevention of
498	caries with probiotic bacteria during early childhood. Promising
499	but inconsistent findings. Am J Dent 2016;29:127-131.
500	Laleman I, Detailleur V, Slot DE, Slomka V, Quirynen M, Teughels W:
501	Probiotics reduce mutans streptococci counts in humans: a
502	systematic review and meta-analysis. Clin Oral Investig
503	2014;18:1539-1552.
504	Laleman I, Teughels W: Probiotics in the dental practice: a review.
505	Quintessence Int 2015;46:255-264.
506	Lemos JA, Abranches J, Koo H, Marquis RE, Burne RA: Protocols to study
507	the physiology of oral biofilms. Methods Mol Biol 2010;666:87-
508	102.
509	Li J, Helmerhorst EJ, Leone CW, Troxler RF, Yaskell T, Haffajee AD,
510	Socransky SS, Oppenheim FG: Identification of early microbial
511	colonizers in human dental biofilm. J Appl Microbiol
512	2004;97:1311-1318.
513	Marsh PD: Are dental diseases examples of ecological catastrophes?
514	Microbiology 2003;149:279-294.
515	Marttinen A, Haukioja A, Karjalainen S, Nylund L, Satokari R, Ohman C,
516	Holgerson P, Twetman S, Soderling E: Short-term consumption

 supragingival plaque. Clin Oral Investig 2012;16:797-803. Matsumoto M, Tsuji M, Sasaki H, Fujita K, Nomura R, Nakano K, Shir S, Ooshima T: Cariogenicity of the probiotic bacterium <i>Lactobacillus salivarius</i> in rats. Caries Res 2005;39:479-483. Mayanagi G, Igarashi K, Washio J, Takahashi N: pH response and too surface solubility at the tooth/bacteria interface. Caries Res 2017;51:160-166. Meurman JH, Antila H, Korhonen A, Salminen S: Effect of <i>Lactobacill</i> <i>rhamnosus</i> strain GG (ATCC 53103) on the growth of <i>Streptococcus sobrinus</i> in vitro. Eur J Oral Sci 1995;103:253-7 Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probioti bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental ca and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatizatio cooperative benefits stabilizes mutualistic cross-feeding 	ntani oth 258. e I R, c
 Matsumoto M, Tsuji M, Sasaki H, Fujita K, Nomura R, Nakano K, Shir S, Ooshima T: Cariogenicity of the probiotic bacterium <i>Lactobacillus salivarius</i> in rats. Caries Res 2005;39:479-483. Mayanagi G, Igarashi K, Washio J, Takahashi N: pH response and too surface solubility at the tooth/bacteria interface. Caries Res 2017;51:160-166. Meurman JH, Antila H, Korhonen A, Salminen S: Effect of <i>Lactobacill</i> <i>rhamnosus</i> strain GG (ATCC 53103) on the growth of <i>Streptococcus sobrinus</i> in vitro. Eur J Oral Sci 1995;103:253- Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probioti bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental ca and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatizatio cooperative benefits stabilizes mutualistic cross-feeding 	ntani oth 258. e I R, c
 S, Ooshima T: Cariogenicity of the probiotic bacterium <i>Lactobacillus salivarius</i> in rats. Caries Res 2005;39:479-483. Mayanagi G, Igarashi K, Washio J, Takahashi N: pH response and too surface solubility at the tooth/bacteria interface. Caries Res 2017;51:160-166. Meurman JH, Antila H, Korhonen A, Salminen S: Effect of <i>Lactobacill</i> <i>rhamnosus</i> strain GG (ATCC 53103) on the growth of <i>Streptococcus sobrinus</i> in vitro. Eur J Oral Sci 1995;103:253-3 Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotio bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental ca and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization 	oth //us 258. e
 Lactobacillus salivarius in rats. Caries Res 2005;39:479-483. Mayanagi G, Igarashi K, Washio J, Takahashi N: pH response and too surface solubility at the tooth/bacteria interface. Caries Res 2017;51:160-166. Meurman JH, Antila H, Korhonen A, Salminen S: Effect of Lactobacill rhamnosus strain GG (ATCC 53103) on the growth of <i>Streptococcus sobrinus</i> in vitro. Eur J Oral Sci 1995;103:253-3 Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotion bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental car and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	oth / <i>us</i> 258. e I R, c
 Mayanagi G, Igarashi K, Washio J, Takahashi N: pH response and too surface solubility at the tooth/bacteria interface. Caries Res 2017;51:160-166. Meurman JH, Antila H, Korhonen A, Salminen S: Effect of <i>Lactobacill</i> <i>rhamnosus</i> strain GG (ATCC 53103) on the growth of <i>Streptococcus sobrinus</i> in vitro. Eur J Oral Sci 1995;103:253-7 Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotio bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental ca and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatizatio cooperative benefits stabilizes mutualistic cross-feeding 	us 258. e R, c
 surface solubility at the tooth/bacteria interface. Caries Res 2017;51:160-166. Meurman JH, Antila H, Korhonen A, Salminen S: Effect of <i>Lactobacill rhamnosus</i> strain GG (ATCC 53103) on the growth of <i>Streptococcus sobrinus</i> in vitro. Eur J Oral Sci 1995;103:253-3 Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotio bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatizatio cooperative benefits stabilizes mutualistic cross-feeding 	/ <i>us</i> 258. e I R, c
 2017;51:160-166. Meurman JH, Antila H, Korhonen A, Salminen S: Effect of <i>Lactobacill</i> <i>rhamnosus</i> strain GG (ATCC 53103) on the growth of <i>Streptococcus sobrinus</i> in vitro. Eur J Oral Sci 1995;103:253-5 Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotion bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental car and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	/ <i>us</i> 258. e R, c
 Meurman JH, Antila H, Korhonen A, Salminen S: Effect of <i>Lactobacill</i> <i>rhamnosus</i> strain GG (ATCC 53103) on the growth of <i>Streptococcus sobrinus</i> in vitro. Eur J Oral Sci 1995;103:253- Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotion bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental car and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	lus 258. e I R, c
 <i>rhamnosus</i> strain GG (ATCC 53103) on the growth of <i>Streptococcus sobrinus</i> in vitro. Eur J Oral Sci 1995;103:253- Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotio bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental ca and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatizatio cooperative benefits stabilizes mutualistic cross-feeding 	258. e R,
 527 Streptococcus sobrinus in vitro. Eur J Oral Sci 1995;103:253- 528 Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. J 530 Oral Microbiol 2014;6. 531 Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotion bacterium, Lactobacillus rhamnosus GG, in milk on dental car and caries risk in children. Caries Res 2001;35:412-420. 536 Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	258. e R, c
 Moye ZD, Zeng L, Burne RA: Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotion bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental car and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	e R, c
 metabolism and gene regulation by <i>Streptococcus mutans</i>. J Oral Microbiol 2014;6. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probiotion bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental cata and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	R, c
 530 Oral Microbiol 2014;6. 531 Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela 532 Meurman JH: Effect of long-term consumption of a probiotion 533 bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental ca 534 and caries risk in children. Caries Res 2001;35:412-420. 535 Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization 536 cooperative benefits stabilizes mutualistic cross-feeding 	R, c
 Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela Meurman JH: Effect of long-term consumption of a probioti bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental ca and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	R, c
 Meurman JH: Effect of long-term consumption of a probioti bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental ca and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	с
 bacterium, <i>Lactobacillus rhamnosus</i> GG, in milk on dental ca and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	
 and caries risk in children. Caries Res 2001;35:412-420. Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatization cooperative benefits stabilizes mutualistic cross-feeding 	aries
535 Pande S, Kaftan F, Lang S, Svatos A, Germerodt S, Kost C: Privatizatio 536 cooperative benefits stabilizes mutualistic cross-feeding	
536 cooperative benefits stabilizes mutualistic cross-feeding	on of
537 interactions in spatially structured environments. ISME J	
538 2016;10:1413-1423.	
539 Pham LC, Hoogenkamp MA, Exterkate RA, Terefework Z, de Soet JJ,	ten
540 Cate JM, Crielaard W, Zaura E: Effects of <i>Lactobacillus</i>	
541 <i>rhamnosus</i> GG on saliva-derived microcosms. Arch Oral Biol	
542 2011;56:136-147.	
543 Pham LC, van Spanning RJM, Roling WFM, Prosperi AC, Terefework Z	Ζ,
544 Ten Cate JM, Crielaard W, Zaura E: Effects of probiotic	
545 <i>Lactobacillus salivarius</i> W24 on the compositional stability of	of
546 oral microbial communities. Arch Oral Biol 2009;54:132-137	
547 Quevedo B, Giertsen E, Zijnge V, Luthi-Schaller H, Guggenheim B,	
548 Thurnheer T, Gmur R: Phylogenetic group- and species-spec	ific
549 oligonucleotide probes for single-cell detection of lactic acid	1
550 bacteria in oral biofilms. BMC Microbiol 2011;11:14.	
551 Salaun F, Mietton B, Gaucheron F: Buffering capacity of dairy produc	cts.
552 Int Dairy J 2005;15:95-109.	
553 Sato Y, Yamagishi J, Yamashita R, Shinozaki N, Ye B, Yamada T,	
554 Yamamoto M, Nagasaki M, Tsuboi A: Inter-individual differe	nces
554 Yamamoto M, Nagasaki M, Tsuboi A: Inter-individual differe 555 in the oral bacteriome are greater than intra-day fluctuation	ences ns in
 554 Yamamoto M, Nagasaki M, Tsuboi A: Inter-individual differe 555 in the oral bacteriome are greater than intra-day fluctuation 556 individuals. PLoS One 2015;10. 	nces ns in
 Yamamoto M, Nagasaki M, Tsuboi A: Inter-individual differe in the oral bacteriome are greater than intra-day fluctuation individuals. PLoS One 2015;10. Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 year 	ences ns in ars
 Yamamoto M, Nagasaki M, Tsuboi A: Inter-individual differe in the oral bacteriome are greater than intra-day fluctuation individuals. PLoS One 2015;10. Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 yea of image analysis. Nat Methods 2012;9:671-675. 	ences ns in ars
 Yamamoto M, Nagasaki M, Tsuboi A: Inter-individual differe in the oral bacteriome are greater than intra-day fluctuation individuals. PLoS One 2015;10. Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 yea of image analysis. Nat Methods 2012;9:671-675. Schwendicke F, Dorfer C, Kneist S, Meyer-Lueckel H, Paris S: Carioge 	ences ns in ars
 Yamamoto M, Nagasaki M, Tsuboi A: Inter-individual differe in the oral bacteriome are greater than intra-day fluctuation individuals. PLoS One 2015;10. Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 yea of image analysis. Nat Methods 2012;9:671-675. Schwendicke F, Dorfer C, Kneist S, Meyer-Lueckel H, Paris S: Carioge effects of probiotic <i>Lactobacillus rhamnosus</i> GG in a dental 	ences ns in ars enic
 Yamamoto M, Nagasaki M, Tsuboi A: Inter-individual differe in the oral bacteriome are greater than intra-day fluctuation individuals. PLoS One 2015;10. Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 yea of image analysis. Nat Methods 2012;9:671-675. Schwendicke F, Dorfer C, Kneist S, Meyer-Lueckel H, Paris S: Carioge effects of probiotic <i>Lactobacillus rhamnosus</i> GG in a dental biofilm model. Caries Res 2014a;48:186-192. 	ences ns in ars enic
 Yamamoto M, Nagasaki M, Tsuboi A: Inter-individual differe in the oral bacteriome are greater than intra-day fluctuation individuals. PLoS One 2015;10. Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 yea of image analysis. Nat Methods 2012;9:671-675. Schwendicke F, Dorfer C, Kneist S, Meyer-Lueckel H, Paris S: Carioge effects of probiotic <i>Lactobacillus rhamnosus</i> GG in a dental biofilm model. Caries Res 2014a;48:186-192. Schwendicke F, Horb K, Kneist S, Dorfer C, Paris S: Effects of heat- 	ences ns in ars enic

564	Streptococcus mutans in vitro. Arch Oral Biol 2014b;59:1384-
565	
566	Selwitz RH, Ismail AI, Pitts NB: Dental caries. Lancet 2007;369:51-59.
567	Simark-Mattsson C, Emilson CG, Hakansson EG, Jacobsson C, Roos K,
568	Holm S: Lactobacillus-mediated interference of mutans
569	streptococci in carles-free vs. carles-active subjects. Eur J Ural
570	Sci 2007;115:308-314.
5/1	Snydman DR: The safety of problotics. Clin Infect Dis 2008;46 Suppl
572	2:S104-111; discussion S144-151.
573	Soderling EM, Marttinen AM, Haukioja AL: Probiotic lactobacilli interfere
574	with Streptococcus mutans biofilm formation in vitro. Curr
575	Microbiol 2011;62:618-622.
576	Stamatova I, Meurman JH, Kari K, Tervahartiala T, Sorsa T, Baltadjieva
577	M: Safety issues of <i>Lactobacillus bulgaricus</i> with respect to
578	human gelatinases in vitro. FEMS Immunol Med Microbiol
579	2007;51:194-200.
580	Takahashi N, Nyvad B: The role of bacteria in the caries process:
581	ecological perspectives. J Dent Res 2011;90:294-303.
582	Tanzer JM, Chassy BM, Krichevsky MI: Sucrose metabolism by
583	Streptococcus mutans, SL-I. Biochim Biophys Acta
584	1971;261:379-387.
585	Tehrani MH, Akhlaghi N, Talebian L, Emami J, Keyhani SE: Effects of
586	probiotic drop containing Lactobacillus rhamnosus,
587	Bifidobacterium infantis, and Lactobacillus reuteri on salivary
588	Streptococcus mutans and Lactobacillus levels. Contemp Clin
589	Dent 2016;7:469-474.
590	Thurnheer T, Gmur R, Guggenheim B: Multiplex FISH analysis of a six-
591	species bacterial biofilm. J Microbiol Methods 2004;56:37-47.
592	Thurnheer T, van der Ploeg JR, Giertsen E, Guggenheim B: Effects of
593	Streptococcus mutans gtfC deficiency on mixed oral biofilms in
594	vitro. Caries Res 2006;40:163-171.
595	Wolcott R, Costerton JW, Raoult D, Cutler SJ: The polymicrobial nature
596	of biofilm infection. Clin Microbiol Infect 2013;19:107-112.
597	Wu CC, Lin CT, Wu CY, Peng WS, Lee MJ, Tsai YC: Inhibitory effect of
598	Lactobacillus salivarius on Streptococcus mutans biofilm
599	formation. Mol Oral Microbiol 2015;30:16-26.
600	Xiao C, Ran S, Huang Z, Liang J: Bacterial diversity and community
601	structure of supragingival plaques in adults with dental health
602	or caries revealed by 16S pyrosequencing. Front Microbiol
603	2016;7:1145.
604	Yamada T, Takahashi-Abbe S, Abbe K: Effects of oxygen on pyruvate
605	formate-lyase in situ and sugar metabolism of Streptococcus
606	mutans and Streptococcus sanguis. Infect Immun 1985;47:129-
607	134.
608	

- 609 Legends
- 610 Table 1. Strains and the growth conditions.
- 611 Figure 1. Viable cell number of LGG from 64.5h multi-species 612 experimental oral biofilms. Biofilms (5SP+LGG) were cultured with 613 fructose (BM-fructose), glucose (BM-glucose), lactose (BM-lactose), 614 sorbitol (BM-sorbitol), sucrose (BM-sucrose), and with carbohydrate 615 free (BM-negative) culture media. Three independent experiments were 616 conducted, each experiment contained two parallels. Every two parallels 617 generates an average. Three averages were involved in the statistical 618 analyse. Each average was based on log10 transformation, and analysed 619 with one-way ANOVA and Dunnett's test were compared with BM-620 negative. Data represent the means \pm SDs, ***P<0.001. 621 Figure 2. The pH of spent culture media for multi-species 622 experimental oral biofilms with (5SP+LGG) and without (5SP) 623 LGG. pH was measured at 16.5, 40.5, and 64.5h. Three independent 624 experiments were performed, each experiment contained two parallels. 625 Two parallels generated an average. Three averages were involved in the 626 statistical analysis. One-way ANOVA with Duncan's test were done, 627 different small letters stand for a significant difference (P < 0.05). Data 628 represent the means \pm SDs. 629 Figure 3. FISH staining of fixed 64.5h biofilms of group 5SP+LGG 630 and 5SP cultivated in different carbohydrates. The groups and tested 631 carbohydrates are labelled to the top left corner of each image. Green 632 (Lcas467-Cy3): LGG, red (MUT590-Cy5): S. mutans, blue (Hoechst): 633 the rest of the strains=S. sanguinis + C. albicans + A. 634 actinomycetemcomitans + F. nucleatum, pink/purple: co-localization of 635 red and blue, black: non-cells area. Column A: Group 5SP+LGG with 636 only green, column B: Group 5SP+LGG with only red and blue, column 637 C: Group 5SP+LGG with red and blue. Each image includes the 638 maximum intensity projections of xy- (top left), yz- (top right, rightmost 639 is closer to HA discs), and xz-planes (bottom, bottom end is closer to HA 640 discs). The scale bar is $30 \,\mu m$.

- 641 Figure 4. Growth curves of LGG cultivated in biofilm broth media
- 642 with a sole carbohydrate for 48h. The biofilm culture medium was
- biofilm medium with fructose (BM-fructose), glucose (BM-glucose),
- 644 lactose (BM-lactose), sorbitol (BM-sorbitol), sucrose (BM-sucrose), or
- 645 with carbohydrate free (BM-negative). Two independent experiments
- 646 were performed, each experiment contained three parallels. Data
- 647 represent the means \pm SDs of all six values.