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Abstract 32 

Probiotic administration may favour caries prevention as recent research 33 

has shown. This in vitro study aimed to investigate the growth of 34 

Lactobacillus rhamnosus GG (LGG) in experimental biofilms exposed to 35 

various carbohydrates, and also to assess its cariogenic potential. Multi-36 

species experimental oral biofilms with/without LGG were grown with a 37 

sole-carbohydrate source (fructose/glucose/lactose/sorbitol/sucrose). The 38 

viable cells of LGG and structure of biofilms were examined after 64.5h 39 

of incubation, and pH values of spent media were measured at 16.5h, 40 

40.5h and 64.5h. Fermentation profiles of LGG in biofilm media were 41 

assessed with study carbohydrate as the sole energy source. Our results 42 

showed that LGG reached higher viable cell numbers with glucose and 43 

sucrose in 64.5h multi-species experimental oral biofilms compared to 44 

other carbohydrates. When LGG was incorporated in biofilms, no 45 

distinct pH changes at all time points were observed under any of the 46 

carbohydrates used; the pH values of spent media at each time point were 47 

lower when lactose was used, compared to other carbohydrates. The 48 

fermentation profiles of LGG in biofilm media were similar to its growth 49 

in MRS (no obvious growth with lactose or sucrose). In conclusion, LGG 50 

in our in vitro multi-species experimental oral biofilms was capable of 51 

surviving and growing well in each carbohydrate source. LGG might not 52 

have harmful effects on dental hard tissues. Another finding in our study 53 

was that the lowest pH values were observed in the presence of lactose, 54 

and the thickest biofilms were in sucrose.  55 
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Introduction 56 

 Dental caries still remains a global oral health burden worldwide. Caries 57 

lesions in enamel and dentin are mainly initiated by the demineralization 58 

of the tooth surface through bacterial acid production from sugar 59 

[Mayanagi et al., 2017]. Sucrose, fructose, and glucose are considered 60 

the most important sugars/carbohydrates in caries development and 61 

progression [Marsh, 2003; Selwitz et al., 2007]. Acid-producing bacteria 62 

commonly associated with dental caries are Streptococcus mutans 63 

[Forssten et al., 2010], lactobacilli [Jiang et al., 2015], and Actinomyces 64 

[Xiao et al., 2016], which are inherent residents of oral biofilms 65 

developing on tooth surface. In the last decade, an increasing number of 66 

studies have shown great interests in the prevention of caries with the 67 

usage of probiotics [Laleman and Teughels, 2015; Jorgensen et al., 68 

2016].  69 

Probiotics are ‘live microorganisms that, when administered in adequate 70 

amounts, confer a health benefit on the host’ [Hill et al., 2014]. Among 71 

the probiotics strains Lactobacillus rhamnosus GG (ATCC 53103, LGG) 72 

is one of the most documented and widely used probiotic strains in the 73 

world. Beneficial effects of LGG in general have been documented in 74 

various clinical trials, including studies on diarrhoea, allergy, and liver 75 

diseases [Floch et al., 2015].  76 

A fair number of clinical trials also suggest that both short- and long-77 

term intake of probiotic could reduce S. mutans counts in saliva and/or 78 

plaque [Meurman et al., 1995; Näse et al., 2001; Aminabadi et al., 2011; 79 

Laleman et al., 2014; Tehrani et al., 2016]. However, a more pronounced 80 

beneficial effect of saliva-derived lactobacilli was observed in subjects 81 

without caries experience rather than in individuals with arrested or 82 

active caries lesions [Simark-Mattsson et al., 2007]. There is still paucity 83 

of evidence to establish relationship between probiotic administration 84 

and decayed/missing/filled teeth (DMFt) scores [Simark-Mattsson et al., 85 

2007; Gruner et al., 2016; Tehrani et al., 2016]. In addition, the safety of 86 

probiotic use in the oral cavity has been a controversial topic. The genus 87 

of Lactobacillus is known for their acidophilic properties, which in light 88 

of the aetiology of dental caries may impose an inherent risk to dental 89 
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hard tissues. In the other hand, probiotics have proven safe both in vitro 90 

and in vivo studies [Snydman, 2008]. Pham et al. [2011] have suggested 91 

that LGG had no significant effect on cariogenic potential of a complex 92 

saliva-derived biofilms. However, Schwendicke et al. [2014a; 2014b] 93 

have reported that LGG and Bifidobacterium BB12 were found to 94 

demineralize both enamel and dentin, and LGG even induced increased 95 

demineralization compared to S. mutans mono-species biofilm alone. 96 

Although there are limited aspects of  positive effects for caries 97 

prevention and insufficient safety studies, probiotics significantly 98 

increased the chance of reducing S. mutans [Gruner et al., 2016] and 99 

mutans streptococci are major pathogens of dental caries [Takahashi and 100 

Nyvad, 2011], which leads the probiotic use in caries prevention as a hot 101 

topic. Accordingly, the inhibitory activity of probiotic against common 102 

oral pathogens (S. mutans, Candida albicans, Streptococcus sanguinis) 103 

has been also tested in vitro [Soderling et al., 2011; Jiang et al., 2015; 104 

Wu et al., 2015; Jiang et al., 2016] and its fermentation profiles have 105 

been a subject of studies [Hedberg et al., 2008; Douillard et al., 2013]. 106 

However, there is limited evidence about the ability of LGG to establish 107 

itself in the human mouth and to integrate and interact with oral biofilms. 108 

Studies in this regard are needed and would contribute towards 109 

understanding the mechanisms behind beneficial effects of probiotics 110 

from the oral health perspective.  111 

Our previous results affirmed that probiotic LGG was able to integrate 112 

with experimental oral biofilms in vitro and differently affected the 113 

growth of tested cariogenic strains [Jiang et al., 2016]. In the present 114 

study, a sequel to our previous work, our aim was to investigate the 115 

growth of LGG in experimental oral biofilms under various carbohydrate 116 

conditions and to evaluate its potential risk for dental hard tissues in 117 

terms of pH alterations to growth environment. 118 

Materials and Methods 119 

Strains, growth conditions, and inoculum preparation 120 

LGG, from Valio Ltd., Helsinki, Finland was used as the probiotic strain 121 

in our study. Biofilms in control group (5SP) were built with the pool of 122 

five species of oral bacterial/yeast strains: C. albicans ATCC 10231, S. 123 
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mutans ATCC 27351, S. sanguinis ATCC 10556, Aggregatibacter 124 

actinomycetemcomitans ATCC 43718, and Fusobacterium nucleatum 125 

ATCC 25586. Group of 5SP with LGG (5SP+LGG) was the study group. 126 

All the strains were maintained as frozen stock at -80⁰C in 20% skim 127 

milk (DifcoTM, BD, Becton, Dickinson and Company, Sparks, MD, 128 

USA). Before each experiment, strains were cultivated twice on 129 

respective agars (details are given in Table 1). Pure colony of each strain 130 

was inoculated in 5 mL corresponding cultivation broth, and cultivated 131 

anaerobically overnight at 37°C. 132 

Bacterial and yeast strains were harvested by centrifugation for 10 min at 133 

3,000  g, at room temperature, washed three times with 5 mL 0.9% 134 

NaCl and re-suspended in biofilm medium base (BMB, biofilm medium 135 

sugar free) adapted from Lemos et al. [2010]. The cell suspensions were 136 

adjusted to an OD490 of 0.130±0.010 (similar to McFarland standard No. 137 

1. The cell concentrations of suspensions were 1.64×108 cells/mL for 138 

LGG, 3.33×107 cells/mL for C. albicans, 7.53×108 cells/mL for S. 139 

mutans, 3.31×108 cells/mL for S. sanguinis, 4.44×109 cells/mL for A. 140 

actinomycetemcomitans, and 1.72×108 cells/mL for F. nucleatum) by a 141 

spectrophotometer (Multisan Plus, Labsystems, Helsinki, Finland, 142 

measured by 200 µL each well in 96-well plate). Aliquots of strain 143 

suspensions were then pooled for control group (5SP) and study group 144 

(5SP+LGG), according to the group setup.  145 

Preparation of biofilms 146 

Biofilms were grown on saliva-coated hydroxyapatite (HA) discs 147 

(Clarkson Chromatography Products, Inc., South Williamsport, PA, 148 

USA). The discs were 7.0 mm in diameter and 1.8 mm high. The HA 149 

discs were placed in a vertical position in disc holders bent from 150 

orthodontic wire according to Lemos et al. [2010] with minor 151 

modifications. The holders and the HA discs were autoclaved after 152 

assembling. 153 

To allow formation of a salivary pellicle, each HA disc was placed in a 154 

well of a sterile 24-well polystyrene cell culture plate, fully immersed 155 

and incubated with 1.8 mL of processed saliva and by gentle shaking for 156 

4h at room temperature. Whole saliva was collected from 21 healthy 157 
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Table 1. Strains and the growth conditions. 648 

Strain Origin Agar/Broth Growth conditions 

Lactobacillus rhamnosus 

GG ATCC 53103 (LGG) 

Valio Ltd., Helsinki, 

Finland 

de Man, Rogosa 

and Sharpe 

(MRS) 

24h, 37°C, 5% CO2 

Candida albicans ATCC 

10231 

American Type 

Culture Collection  

(ATCC) 

Sabouraud 24h, 37°C, air 

Streptoccus mutans ATCC 

27351 
ATCC 

Brain Heart 

Infusion (BHI) 
24h, 37°C, 5% CO2 

Streptococcus sanguinis 

ATCC 10556 
ATCC BHI 24h, 37°C, 5% CO2 

Aggregatibacter 

actinomycetemcomitans 

ATCC 43718 

ATCC BHI 24h, 37°C, 5% CO2 

Fusobacterium nucleatum 

ATCC 25586 
ATCC Brucella 

48h, 37°C, in 

anaerobic condition  

(mixture of 0.2% O2, 

5% CO2, 9.9% H2, 

84.9% N2) 

 649 
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volunteers after their informed consent (men, n=10, women, n=11; mean 158 

age 35±8). Pregnancy, gingival bleeding, history of antibiotic 159 

administration in the past 2 weeks, and eating, drinking and oral hygiene 160 

procedures 1.5 hour prior saliva collection were the main exclusion 161 

criteria. The processed saliva was prepared and pasteurized according to 162 

Guggenheim et al. [2001]. The efficacy of pasteurization was assessed by 163 

plating processed saliva samples onto Brucella agar (BBLTM, BD, 164 

Becton, Dickinson and Company, Sparks, MD, USA, with vitamin K3 10 165 

ug/mL, hemin 5 ug/mL, and 5% defibrinated horse blood from bio 166 

TRADING, Mijdrecht, the Netherlands), and cultivated either aerobically 167 

or anaerobically for 3 days, until no colonies were observed. 168 

After the saliva-coating step, HA discs were transferred to a new 24-well 169 

plate containing 2.5 mL biofilm culture medium and 0.3 mL pooled 170 

strains in each well. Six biofilm culture media were used in this study, 171 

namely BMB with water (BM-negative), with fructose (BM-fructose), 172 

with glucose (BM-glucose), with lactose (BM-lactose), with sorbitol 173 

(BM-sorbitol), and with sucrose (BM-sucrose). The concentration of 174 

carbohydrate was 3.6 g/L (i.e. 20 mM glucose/fructose/sorbitol or 10 175 

mM lactose/sucrose). Then the plates with HA discs and broth media 176 

were incubated anaerobically at 37°C for 64.5 h in dark. Broth media 177 

were renewed at 16.5h and 40.5h as the following steps: the discs were 178 

first washed by dipping twice into 2.8 mL physiological saline and then 179 

transferred to a new 24-well plate containing 2.8 mL fresh broth media 180 

per well. 181 

Examination of LGG cells 182 

After 64.5h cultivation and two dip washes in physiological saline, each 183 

HA disc was transferred into a sterile 50 mL polypropylene tube 184 

containing 5 mL of physiological saline at room temperature, and 185 

vortexed (by Vortex-Genie® 2 mixer, Scientific industries, Inc, Bohemia, 186 

N.Y., USA) vigorously for 2 min, and sonicated (by Wagner instrusonic, 187 

PS-Terä Oy, Lahti, Finland, 90/180 watts) for 5 sec at room temperature. 188 

Serial dilutions of the sonicated cells were cultivated on de Man, Rogosa 189 

and Sharpe (MRS; Lab M Ltd, Bury, UK) agar plates at 37°C in 5% CO2 190 
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for 72h. Colony forming units (CFU) of LGG were counted based on its 191 

colonial morphology on MRS. 192 

Measurement of pH values of spent culture media 193 

The pH of spent media was measured with a pH meter (pH 1000 L, 194 

pHenomenal®, VWR International, Rador, PA, USA) at all three time 195 

points, when the HA discs were transferred into fresh media or 196 

physiological saline and when the spent media were replaced. The spent 197 

media were centrifuged for 10 min, 3,000  g prior to pH measurement 198 

from the supernatant. 199 

Structural analysis of biofilms 200 

The biofilm structure was analysed with the method of fluorescence in 201 

situ hybridization (FISH). 202 

For FISH analysis, the staining was performed mainly according to the 203 

protocol established by Thurnheer et al. [2004]. In short, 64.5h biofilms 204 

were fixed immediately with 4% (w/v) paraformaldehyde for 1h at 4°C, 205 

permeabilized for 30 min at 37°C by exposure to the mixture (46200 206 

U/ml or 1 mg/ml lysozyme, 98 mM Tris/HCl, 5 mM EDTA, pH 7.5. 207 

Extra 100 U/mL mutanolysin was added for Group 5SP+LGG), pre-208 

hybridized in hybridization buffer (0.9M NaCl, 20mM Tris/HCl, 30% 209 

Formamide, 0.01% SDS) at 46°C for 15 min, and followed by 210 

hybridization for 3h with fluorescently labelled oligonucleotides 211 

(Lcas467-Cy3 probe binds LGG: 5´-CCGTCACGCCGACAACAG-3  ́212 

[Ardita et al., 2014], and MUT590-Cy5 probe binds S. mutans: 5´-213 

ACTCCAGACTTTCCTGAC-3  ́[Quevedo et al., 2011]). After 214 

hybridization, biofilms were washed twice in wash buffer (20mM 215 

Tris/HCl, 5mM EDTA, 102 mM NaCl, 0.01% SDS) and stained with 216 

Hoechst (to stain the rest of the strains= S. sanguinis + C. albicans + A. 217 

actinomycetemcomitans + F. nucleatum) for 5min in dark.  218 

Afterwards all the samples were embedded in Mowiol [Thurnheer et al., 219 

2006] overnight at room temperature and were examined with an 220 

inverted Confocal Laser Scanning Microscopy (CLSM) Leica SP8 (Leica 221 

Microsystems Gmbh Wetzlar, Germany). CLSM images were obtained 222 

with a ×40 water immersion objective. Each biofilm was scanned at 223 

randomly selected areas as a series of vertical optical sections, each 224 
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section was 0.50 µm thick. Digital images were processed with Fiji 225 

[Schneider et al., 2012].  226 

Fermentation profiles of LGG in biofilm medium with sole 227 

carbohydrate source. 228 

The overnight cultures of LGG were harvested by centrifugation for 229 

10min at 3,000  g, at room temperature, washed three times with 5 mL 230 

0.9% NaCl and re-suspended in BM-negative medium. The suspensions 231 

were adjusted to an optical density at 490 nm (OD490) of 0.360±0.010. 232 

The adjusted suspension (200µL) was inoculated into 5mL aliquots of 233 

BM-negative, fructose, glucose, lactose, sorbitol, or sucrose media, 234 

respectively, and cultivated in 5% CO2 at 37°C. The growth was 235 

measured by observing the changes of OD490 at 0, 4, 6, 20, 24 and 48h 236 

incubation. 237 

Statistical analysis 238 

Data are shown as means ± standard deviations. Statistical analyses were 239 

performed with IBM SPSS Statistics version 22 for Windows. One-way 240 

ANOVA and Dunnett’s test were used to determine statistical 241 

significance in Figure 1, and Duncan’s test in Figure 2. A difference was 242 

deemed significant at P<0.05 or ***P<0.001. Log10 transformation of 243 

the viable cell numbers was made before the statistical analysis. 244 

Results 245 

Growth of LGG in biofilms 246 

The viable cell numbers of LGG in 64.5h experimental oral biofilms 247 

cultured with the five sole-carbohydrate media are presented in Figure 1. 248 

LGG was able to use all the supplemented carbohydrates for growth and 249 

viable cells of LGG were detected in all the biofilms, including the 250 

negative control group. LGG grew to higher number when the 251 

carbohydrate source was glucose (2.33±1.60 ×106 CFU/disc) and sucrose 252 

(2.29±0.99 ×106 CFU/disc) compared with the other carbohydrate 253 

sources. These numbers were significantly (P < 0.001) higher than that in 254 

the negative control group (3.54±2.18 ×103 CFU/disc). Among the study 255 

groups, the lowest viable cell number of LGG was measured when 256 

sorbitol was used (1.55 ± 0.58 ×105 CFU/disc). In the presence of lactose 257 
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and fructose, the numbers of LGG were 9.67±8.12 ×105 CFU/disc and 258 

8.88±6.39 ×105 CFU/disc, respectively.  259 

The highest viable cell numbers of LGG in the experimental oral 260 

biofilms were observed in the presence of glucose, followed by sucrose, 261 

lactose, fructose, sorbitol and negative control.  262 

pH values of spent media 263 

The pH values of spent media (Figure 2) were measured when new broth 264 

media were replaced or at the end of cultivation, i.e. at 16.5h, 40.5h and 265 

64.5h, respectively. 266 

The pH values of spent media at 16.5h were above 5. The presence of 267 

LGG did not clearly change the pH values of the spent media when 268 

comparing the groups of 5SP+LGG and 5SP which had been cultivated 269 

with each carbohydrate studied and at each time point.  270 

The pH values in the carbohydrate-supplemented groups were 271 

significantly lower than that in the negative group (P<0.05).  272 

The lowest pH values in 5SP+LGG and 5SP groups at all time points 273 

(respectively at 16.5h: 5.34±0.09 and 5.34±0.09, at 40.5h: 4.79±0.10 and 274 

4.81±0.12, at 64.5h: 4.72±0.09 and 4.75±0.14) were measured from the 275 

subgroup BM-lactose.  276 

Biofilms structure 277 

All the microbes in 64.5h biofilms grew out as layer structures (Figure 278 

3), and hemispherical shape structures were observed in the presence of 279 

sucrose. 280 

From column A, LGG was able to be detected in 64.5h biofilms of group 281 

5SP+LGG under all the tested carbohydrate conditions.  282 

Comparing columns B and C with each carbohydrate, less microbes 283 

(both red and blue channels) were adhered and developed in group 284 

5SP+LGG than in group 5SP. Also the first layer of biofilms of group 285 

5SP was mainly composed of S. mutans, but this layer in group 286 

5SP+LGG was mostly mixed up with the rest of the strains.   287 

Planktonic cell growth 288 

In order to compare the growth of LGG in the experimental oral biofilms 289 

and as planktonic cells, we also tested the fermentation profiles of LGG 290 

in biofilm broth media with the five sole-carbohydrates in 48h. Figure 4 291 
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shows that at the end of cultivation LGG grew to highest optical density 292 

in subgroups BM-glucose and BM-fructose, and higher in BM-sorbitol. 293 

No obvious increases of optical density were found in BM-negative, 294 

BM-lactose, and BM-sucrose, respectively.  295 

The highest growth of LGG in the biofilm broth media was in the 296 

presence of glucose, followed by fructose, sorbitol, negative control, and 297 

lactose, while least growth was observed in the presence of sucrose. 298 

Discussion 299 

This in vitro study aimed to investigate LGG growth in experimental oral 300 

biofilms simulating oral conditions and, secondly, to evaluate the 301 

potential of this probiotic strain in decreasing pH in its environment in 302 

the perspective of dental caries. We built 64.5h multi-species 303 

experimental oral biofilms cultivated with fructose, glucose, lactose, 304 

sorbitol, and sucrose. Our results demonstrate that LGG can grow to 305 

higher viable cell numbers with glucose and sucrose in these multi-306 

species biofilms compared to the other carbohydrates. Furthermore, the 307 

addition of LGG did not decrease the pH values in the experimental 308 

model systems. 309 

The growth of LGG in the multispecies experimental oral biofilms was 310 

different from its growth in mono-species biofilms or as planktonic cells. 311 

We found that LGG in our study was able to survive and grow well in a 312 

wider spectrum of carbohydrate sources. The growth of LGG as 313 

planktonic cells in the biofilm broth media was similar to that in MRS 314 

[Jiang et al., 2015], showing low or no capability to utilize sucrose or 315 

lactose. But LGG in the multispecies experimental oral biofilms did 316 

show better growth in the presence of sucrose or lactose. In the study of 317 

Hedberg et al. [2008] LGG was found to ferment sucrose or lactose only 318 

after 48h and 72h cultivation. Another possible reason to explain its 319 

growth in sucrose and lactose in our experiment is that S. mutans [Moye 320 

et al., 2014], S. sangunis [Tanzer et al., 1971; Yamada et al., 1985] 321 

and/or C. albicans [Binkley et al., 2014] when present in the biofilms 322 

could hydrolyse these two carbohydrates to fructose, glucose, and 323 

galactose. Then fructose and glucose could be easily utilised by LGG 324 

leading to higher viable cell numbers observed.  325 
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One of our important findings is that the growth of LGG in sucrose or 326 

lactose with cross-feeding is here demonstrated. Whenever one organism 327 

uses metabolites produced by another organism as energy or nutrient 328 

sources, it is called cross-feeding [Estrela et al., 2012]. A recent study 329 

from Pan et al. [2016] has demonstrated that cooperative cross-feeding 330 

between different bacterial species is favoured in structured 331 

environments such as bacterial biofilms, suggesting that this type of 332 

interactions might be common in natural bacterial communities. 333 

Apparently, the nutritional interaction in the present study was beneficial 334 

regarding the growth of LGG.  335 

In addition, when glucose was the sole carbohydrate source, the viable 336 

cell number of LGG in the multispecies experimental oral biofilms 337 

(2.33±1.60 ×106 CFU/disc) was more than seven times higher than the 338 

viable cell number of LGG in its mono-species biofilms (3.16±1.80 ×105 339 

CFU/disc) [Jiang et al., 2016]. This finding could be explained by the 340 

theory that microbial consortia actively attempt to become poly-341 

microbial in order to gain resistance and better survival ability [Wolcott 342 

et al., 2013].  343 

In our series LGG showed no cariogenic potential since the pH values of 344 

the spent media at 16.5h were not decreased when LGG was co-cultured. 345 

These pH values did not drop close to or below the critical levels for 346 

dental enamel demineralization (i.e. pH 5.2-5.5) [Dahlén et al., 2012]. 347 

This phenomenon in the present study might be explained by three 348 

possible ways: 1) The biofilm medium contained 68.5 mmol/L 349 

phosphate, which prevented any drastic pH change; 2) the acids 350 

produced by LGG were utilized by the other micro-organisms and thus 351 

did not affect the environment; and 3) LGG cells comprised only a small 352 

part in the biofilms, so the acids generated by them did not decrease the 353 

pH in the whole model system.  354 

Commercial probiotic products are now widely available, so safety issues 355 

are raising up. Numerous in vitro and in vivo studies have been 356 

published to address the consumption of probiotics from various 357 

perspectives. For example, Hibberd et al. [2014] have reported that in a 358 

28-day clinical trial, LGG was safe in healthy adults aged 65 years and 359 
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older with no serious adverse events. And a two-week consumption of 360 

Lactobacillus reuteri and LGG appeared not to influence the 361 

acidogenicity of plaque of young adults [Marttinen et al., 2012]. 362 

Stamatova et al. [2007] have proved that intake of Lactobacillus 363 

bulgaricus strains is not anticipated to exert any deleterious effects on 364 

the regulatory enzymes and structure of the host extracellular matrix. 365 

However, some reports do not agree with the above conclusions. 366 

Probiotics strains, for example, Lactobacillus salivarius strains, LGG, 367 

BB12 have been reported to show ability to induce caries and mineral 368 

loss in vivo and in vitro [Matsumoto et al., 2005; Pham et al., 2009; 369 

Schwendicke et al., 2014a; Schwendicke et al., 2014b]. These 370 

contradictory reports urge more relevant future studies to clarify the 371 

safety issue. Meanwhile the effects of probiotics are strain-dependant, it 372 

is crucial to select no cariogenic risk strains as oral probiotics. 373 

In the present study, it was interesting to find out that the pH values of 374 

the spent media were lowest in the presence of lactose. Lactose is one of 375 

the major sugars in dairy products and its fermentation can potentially 376 

demineralize dental hard tissues. Traditionally, sucrose is regarded the 377 

most cariogenic sugar [Boonyanit et al., 2011]. In our study sucrose in 378 

the growth medium indeed resulted in low pH values of the spent media 379 

but not as low pH values as lactose. This finding might be used to advise 380 

consumers to choose lactose-free probiotic products. However, it should 381 

be kept in mind that milk, for example, has a strong buffering capacity 382 

[Salaun et al., 2005]. Thus, studies in clinical setting are called for before 383 

drawing any further conclusion in this respect. 384 

Although lactose led to a lowest pH, sucrose resulted in thicker biofilms, 385 

which agrees with and proofs that sucrose is the most cariogenic sugar 386 

[Gupta et al., 2013]. And the biofilms’ structure implies that S. mutans 387 

colonized the saliva-coated HA surface earlier than the rest of the strains 388 

and the addition of LGG affected the adherence of S. mutans, which are 389 

consistent with previous observations [Li et al., 2004; Jiang et al., 2016]. 390 

These results all prove that this biofilm model is effective and repeatable.  391 

One of the strengths of this study is to involve multi-species to build 392 

biofilms to mimic a complex ecosystem, but it is also a limitation. 393 
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Because the dynamic oral cavity contains far more species to form 394 

various microbial communities, and there are great inter-individual 395 

variations [Sato et al., 2015]. Also the tested strains are all reference 396 

strains. Hence the findings in this study need to be further confirmed and 397 

ideally in a clinical setting.  398 

Within the limitations of this study, LGG in our in vitro multi-species 399 

experimental oral biofilms was capable of surviving and growing well 400 

with each of the studied carbohydrate sources. The lowest pH values 401 

were observed in the presence of lactose. 402 
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Legends 609 

Table 1. Strains and the growth conditions. 610 

Figure 1. Viable cell number of LGG from 64.5h multi-species 611 

experimental oral biofilms. Biofilms (5SP+LGG) were cultured with 612 

fructose (BM-fructose), glucose (BM-glucose), lactose (BM-lactose), 613 

sorbitol (BM-sorbitol), sucrose (BM-sucrose), and with carbohydrate 614 

free (BM-negative) culture media. Three independent experiments were 615 

conducted, each experiment contained two parallels. Every two parallels 616 

generates an average. Three averages were involved in the statistical 617 

analyse. Each average was based on log10 transformation, and analysed 618 

with one-way ANOVA and Dunnett’s test were compared with BM-619 

negative. Data represent the means ± SDs, ***P<0.001.  620 

Figure 2. The pH of spent culture media for multi-species 621 

experimental oral biofilms with (5SP+LGG) and without (5SP) 622 

LGG. pH was measured at 16.5, 40.5, and 64.5h. Three independent 623 

experiments were performed, each experiment contained two parallels. 624 

Two parallels generated an average. Three averages were involved in the 625 

statistical analysis. One-way ANOVA with Duncan’s test were done, 626 

different small letters stand for a significant difference (P<0.05). Data 627 

represent the means ± SDs. 628 

Figure 3. FISH staining of fixed 64.5h biofilms of group 5SP+LGG 629 

and 5SP cultivated in different carbohydrates. The groups and tested 630 

carbohydrates are labelled to the top left corner of each image. Green 631 

(Lcas467-Cy3): LGG, red (MUT590-Cy5): S. mutans, blue (Hoechst): 632 

the rest of the strains=S. sanguinis + C. albicans + A. 633 

actinomycetemcomitans + F. nucleatum, pink/purple: co-localization of 634 

red and blue, black: non-cells area. Column A: Group 5SP+LGG with 635 

only green, column B: Group 5SP+LGG with only red and blue, column 636 

C: Group 5SP+LGG with red and blue. Each image includes the 637 

maximum intensity projections of xy- (top left), yz- (top right, rightmost 638 

is closer to HA discs), and xz-planes (bottom, bottom end is closer to HA 639 

discs). The scale bar is 30 µm. 640 
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Figure 4. Growth curves of LGG cultivated in biofilm broth media 641 

with a sole carbohydrate for 48h. The biofilm culture medium was 642 

biofilm medium with fructose (BM-fructose), glucose (BM-glucose), 643 

lactose (BM-lactose), sorbitol (BM-sorbitol), sucrose (BM-sucrose), or 644 

with carbohydrate free (BM-negative). Two independent experiments 645 

were performed, each experiment contained three parallels. Data 646 

represent the means ± SDs of all six values.  647 


