81 research outputs found

    Conduction mechanism in passive films on austenitic stainless steels in sulphate solutions

    Get PDF
    The passive state of three commercial highly alloyed austenitic stainless steels is studied by voltammetric, contact electric resistance and impedance measurements in 0.5 M sulphate solutions (pH 2-7). The three materials self-passivate and are susceptible to transpassive dissolution. The electric properties of the passive films formed are only slightly dependent on alloy composition. The impedance response can be interpreted as due to both the electronic properties of a thin semiconductor film of variable stoichiometry and the ionic defect migration through that film limiting the metal dissolution rate in the passive state. A range of kinetic, transport and structural parameters characterising the passive film and its interfaces with the underlying alloys and the electrolyte solution are determined by a quantitative comparison of the Mixed-Conduction Model to the experimental steady-state current and impedance data in a wide potential range. The relevance of the parameter values and the prospects of using the proposed approach to predict the steady-state metal dissolution rate and thus the general corrosion behaviour of stainless steels are discussed

    A Note to Our Readers

    Get PDF

    Deposition of Colloidal Magnetite on Stainless Steel in Simulated Steam Generator Conditions—Experiments and Modeling

    No full text
    Sludge formation via colloidal magnetite deposition in steam generators is an important phenomenon that significantly influences the thermohydraulic properties and corrosion of structural materials. This paper aims to verify a model of sludge deposition and consolidation with emphasis on its most significant parameters and their experimental estimation. In-situ electrochemical impedance spectroscopic (EIS) measurements are employed for quantitative evaluation of magnetite deposition kinetics on stainless steel in ammonia-ethanolamine (AMETA) secondary coolant at different temperatures. Parameterization of the model by quantitative comparison of the mixed-conduction model (MCM) with experimental data is discussed. Model predictions are compared with literature data from laboratory experiments and plant operation. Conclusions are drawn about the applicability of the model for quantitative assessment of sludge deposition and consolidation rates

    Hydrazine replacement in nuclear power plants:alternative substances and techniques

    No full text

    Long-Term Oxidation of Zirconium Alloy in Simulated Nuclear Reactor Primary Coolant—Experiments and Modeling

    No full text
    Oxidation of Zr-1%Nb fuel cladding alloy in simulated primary coolant of a pressurized water nuclear reactor is followed by in-situ electrochemical impedance spectroscopy. In-depth composition and thickness of the oxide are estimated by ex-situ analytical techniques. A kinetic model of the oxidation process featuring interfacial reactions of metal oxidation and water reduction, as well as electron and ion transport through the oxide governed by diffusion-migration, is parameterized by quantitative comparison to impedance data. The effects of compressive stress on diffusion and ionic space charge on migration of ionic point defects are introduced to rationalize the dependence of transport parameters on thickness (or oxidation time). The influence of ex-situ and in-situ hydrogen charging on kinetic and transport parameters is also studied

    State-of-the-art on SG corrosion problems:lead induced stress corrosion cracking

    No full text

    Hydrazine replacement in nuclear power plants:alternative substances and techniques

    No full text
    • …
    corecore