14 research outputs found

    The Reserva de la Biosfera Barranca de Metztitlán (Hidalgo): An illustrated checklist of bromeliads and orchids and their high levels of Mexican endemisms

    Get PDF
    This study presents a list of species of the two most important families with epiphytic elements, Bromeliaceae and Orchidaceae, from the Reserva de la Biosfera Barranca de Metztitlán (RBBM), the largest Reserve in Hidalgo, Mexico. Thirty-four species are included, 26 corresponding to species in three genera of bromeliads, and eight species in six genera of orchids. The new records represent 26.5% of the total listed in the area; nine of them are new records for the Reserve (RBBM) and one is new for Hidalgo State. This study reveals that endemism for both families is very important in the Reserve (55.88%), since it includes 13 Mexican bromeliads, of which two are endemic to Hidalgo and one to the Reserve, and three orchids, two endemic to Mexico and one to the Reserve. We found species with different types of relative abundance: rare (16) and occasional (7). Additionally, we include information about the category (IUCN, CITES, NOM-059-SEMARNAT) as well as uses reported in the literature for the species in the RBBM. The checklist is strictly based on information obtained from deposited herbarium specimens as well as from those collected during fieldwork. We suggest that a conservation plan (in situ and ex situ) for the RBBM is important and necessary. The predominant habit for both families is epiphytic (17 species); even though there are terrestrial (7) and saxicolous (2), and the remaining are facultative species (8). Nine species are included in some risk category. The present work is the most complete and updated list of Bromeliaceae and Orchidaceae for this important natural area in the Mexican State of Hidalgo. However, more fieldwork is needed to document the biodiversity of the area in general and its flora in particular, as a way to highlight the importance of protected areas in preserving biodiversity

    Re-establishment of the genus Pseudalbizzia (Leguminosae, Caesalpinioideae, mimosoid clade): the New World species formerly placed in Albizia

    Full text link
    Following recent mimosoid phylogenetic and phylogenomic studies demonstrating the non-monophyly of the genus Albizia, we present a new molecular phylogeny focused on the neotropical species in the genus, with much denser taxon sampling than previous studies. Our aims were to test the monophyly of the neotropical section Arthrosamanea, resolve species relationships, and gain insights into the evolution of fruit morphology. We perform a Bayesian phylogenetic analysis of sequences of nuclear internal and external transcribed spacer regions and trace the evolution of fruit dehiscence and lomentiform pods. Our results find further support for the non-monophyly of the genus Albizia, and confirm the previously proposed segregation of Hesperalbizia, Hydrochorea, Balizia and Pseudosamanea. All species that were sampled from section Arthrosamanea form a clade that is sister to a clade composed of Jupunba, Punjuba, Balizia and Hydrochorea. We find that lomentiform fruits are independently derived from indehiscent septate fruits in both Hydrochorea and section Arthrosamanea. Our results show that morphological adaptations to hydrochory, associated with shifts into seasonally flooded habitats, have occurred several times independently in different geographic areas and different lineages within the ingoid clade. This suggests that environmental conditions have likely played a key role in the evolution of fruit types in Albizia and related genera. We resurrect the name Pseudalbizzia to accommodate the species of section Arthrosamanea, except for two species that were not sampled here but have been shown in other studies to be more closely related to other ingoid genera and we restrict the name Albizia s.s. to the species from Africa, Madagascar, Asia, Australia, and the Pacific. Twenty-one new nomenclatural combinations in Pseudalbizzia are proposed, including 16 species and 5 infraspecific varietal names. In addition to the type species Pseudalbizzia berteroana, the genus has 17 species distributed across tropical regions of the Americas, including the Caribbean. Finally, a new infrageneric classification into five sections is proposed and a distribution map of the species of Pseudalbizzia is presented

    New plastome structural rearrangements discovered in core Tillandsioideae (Bromeliaceae) support recently adopted taxonomy

    Get PDF
    Full plastome sequences for land plants have become readily accessible thanks to the development of Next Generation Sequencing (NGS) techniques and powerful bioinformatic tools. Despite this vast amount of genomic data, some lineages remain understudied. Full plastome sequences from the highly diverse (>1,500 spp.) subfamily Tillandsioideae (Bromeliaceae, Poales) have been published for only three (i.e., Guzmania, Tillandsia, and Vriesea) out of 22 currently recognized genera. Here, we focus on core Tillandsioideae, a clade within subfamily Tillandsioideae, and explore the contribution of individual plastid markers and data categories to inform deep divergences of a plastome phylogeny. We generated 37 high quality plastome assemblies and performed a comparative analysis in terms of plastome structure, size, gene content and order, GC content, as well as number and type of repeat motifs. Using the obtained phylogenetic context, we reconstructed the evolution of these plastome attributes and assessed if significant shifts on the evolutionary traits’ rates have occurred in the evolution of the core Tillandsioideae. Our results agree with previously published phylogenetic hypotheses based on plastid data, providing stronger statistical support for some recalcitrant nodes. However, phylogenetic discordance with previously published nuclear marker-based hypotheses was found. Several plastid markers that have been consistently used to address phylogenetic relationships within Tillandsioideae were highly informative for the retrieved plastome phylogeny and further loci are here identified as promising additional markers for future studies. New lineage-specific plastome rearrangements were found to support recently adopted taxonomic groups, including large inversions, as well as expansions and contractions of the inverted repeats. Evolutionary trait rate shifts associated with changes in size and GC content of the plastome regions were found across the phylogeny of core Tillandsioideae.Fil: Vera Paz, Sandra I.. Universidad Nacional Autónoma de México; MéxicoFil: Díaz Contreras Díaz, Daniel D.. Universidad Nacional Autónoma de México; MéxicoFil: Jost, Matthias. No especifíca;Fil: Wanke, Stefan. Universidad Nacional Autónoma de México; MéxicoFil: Rossado, Andrés J.. Universidad de la Republica; UruguayFil: Hernández Gutiérrez, Rebeca. Universidad Nacional Autónoma de México; MéxicoFil: Salazar, Gerardo A.. Universidad Nacional Autónoma de México; MéxicoFil: Magallón, Susana. Universidad Nacional Autónoma de México; MéxicoFil: Gouda, Eric J.. Utrecht University; Países Bajos. University of Utrecht; Países BajosFil: Ramírez Morillo, Ivón M.. No especifíca;Fil: Donadío, Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Granados Mendoza, Carolina. Universidad Nacional Autónoma de México; Méxic

    Una nueva Hechtia (Bromeliaceae) de los estados de Querétaro e Hidalgo, México

    Get PDF
    Hechtia lepidophylla is described and illustrated. A complete description including characters of staminate, pistillate, and fruiting plants is included, with details of growth pattern and ecological characteristics, as well as characters to distinguish it from species with similar vegetative and floral characters such as H. argentea, H. glomerata, and H. texensis.Se describe e ilustra Hechtia lepidophylla. Se incluye una descripción completa con características de las flores estaminadas, pistiladas y de los frutos. Asimismo, se discuten detalles de su patrón de crecimiento y características ecológicas, así como los rasgos que la distinguen de especies similares en aspectos vegetativos y florales, tales como H. argentea, H. glomerata y H. texensis

    A New Species of Hechtia

    No full text

    It takes two to tango: self incompatibility in the bromeliad Tillandsia streptophylla (Bromeliaceae) in Mexico

    No full text
    Floral phenology and breeding system of Tillandsia streptophylla (Bromeliaceae) were studied in a low inundated forest in Yucatan, Mexico. During the flowering season, from March to August, terminal scapose 1-branched, paniculate inflorescences are produced with one flower per branch opening per day, over a period of 11-29 days. Flowers are tubular, light violet, with the stigma placed below the anthers, both protruding above the corolla. Flowers are protandrous, with anthers releasing pollen from 0500 hours and stigma becoming receptive around 0900 hours. Controlled experimental crosses suggest that Tillandsia streptophylla is self incompatible and therefore, pollinator-dependent. Rev. Biol. Trop. 57 (3): 761-770. Epub 2009 September 30.Estudiamos la fenología floral y el sistema de cruzamiento de la bromelia Tillandsia streptophylla (Bromeliaceae) en una selva baja inundable en Yucatán, México. Durante la estación de floración (marzo a agosto), las plantas producen una inflorescencia terminal, escaposa, paniculada, 1-dividida, con una flor abriendo por rama por día para un período de floración de 11-29 días por inflorescencia. Las flores son tubulares, de corola violeta claro, con el estigma y anteras exertos, pero las anteras más largas que el estigma en antesis. Las flores son protandras, con las anteras liberando el polen desde las 0500 horas y la receptividad del estigma comenzando a las 0900 horas. Los cruces experimentales controlados sugieren que Tillansdia streptophylla es auto incompatible y por ende, dependiente de los polinizadores

    It takes two to tango: self incompatibility in the bromeliad Tillandsia streptophylla (Bromeliaceae) in Mexico

    No full text
    Floral phenology and breeding system of Tillandsia streptophylla (Bromeliaceae) were studied in a low inundated forest in Yucatan, Mexico. During the flowering season, from March to August, terminal scapose 1-branched, paniculate inflorescences are produced with one flower per branch opening per day, over a period of 11-29 days. Flowers are tubular, light violet, with the stigma placed below the anthers, both protruding above the corolla. Flowers are protandrous, with anthers releasing pollen from 0500 hours and stigma becoming receptive around 0900 hours. Controlled experimental crosses suggest that Tillandsia streptophylla is self incompatible and therefore, pollinator-dependent

    Reproductive biology of Hechtia schottii, a dioecious Bromeliaceae, in Mexico

    No full text
    Hechtia schottii is a terrestrial, rosetofilous, dioecious, polycarpic succulent herb, that grows mainly in shrubby associations, and less frequently, in secondary low caducifolious forests, both on calcareous soils or limestone outcrops in Yucatan and Campeche States, Mexico. We studied phenology, floral and pollination biology, and breeding system at Calcehtok, Yucatan, during two flowering seasons. Plants bloom mainly during the dry season (November-April) and disperse seeds during the rainy season (May-October). Both floral morphs have diurnal anthesis; pollen is removed ca. 1 h after anthesis starts and both floral morphs are visited by several insect species, especially bees, but results suggest that the introduced honey bee, Apis mellifera, is the pollinator. Controlled crossings show that the species is functionally dioecious and requires to be serviced by pollinators based on fruit setting only in unassisted cross pollination crosses

    Reproductive biology of Hechtia schottii, a dioecious Bromeliaceae, in Mexico

    No full text
    Hechtia schottii is a terrestrial, rosetofilous, dioecious, polycarpic succulent herb, that grows mainly in shrubby associations, and less frequently, in secondary low caducifolious forests, both on calcareous soils or limestone outcrops in Yucatan and Campeche States, Mexico. We studied phenology, floral and pollination biology, and breeding system at Calcehtok, Yucatan, during two flowering seasons. Plants bloom mainly during the dry season (November-April) and disperse seeds during the rainy season (May-October). Both floral morphs have diurnal anthesis; pollen is removed ca. 1 h after anthesis starts and both floral morphs are visited by several insect species, especially bees, but results suggest that the introduced honey bee, Apis mellifera, is the pollinator. Controlled crossings show that the species is functionally dioecious and requires to be serviced by pollinators based on fruit setting only in unassisted cross pollination crosses. Rev. Biol. Trop. 56 (1): 279-289. Epub 2008 March 31.Hechtia schottii es una hierba terrestre, suculenta, rosetófila, dioica y policárpica, que crece en asociaciones arbustivas y selva baja caducifolia secundaria, ambos en suelos calcáreos o limosos. Estudiamos la fenología, la biología floral, reproductiva y de la polinización en una población en Calcehtok, Yucatán, México, durante dos estaciones de floración. Las plantas florecen principalmente en la época de secas (noviembre-abril) y la dispersión de semillas es durante la estación de lluvias (mayo-octubre). Ambas formas (morphs) florales tienen antesis diurna; el polen es removido ca. 1 h después del comienzo de la antesis y ambas formas florales son visitadas por varias especies de insectos, especialmente abejas, pero los resultados sugieren que la abeja introducida, Apis mellifera, es el polinizador. Cruces controlados muestran que la especie es funcionalmente dioica y que requiere de un polinizador, ya que solo produce frutos por polinización no asistida entre formas

    Pavonia paludicola (Malvaceae), a new record for Mexico

    Get PDF
    Background: Pavonia (Malvaceae) is a morphologically diverse genus with more than 200 species in America of which 32 have been previously reported in Mexico. In a field trip to the Reserva Estatal de Dzilam de Bravo, in northern Yucatan, a population of a Malvaceae species was detected that could not be unequivocally matched with any species known previously in the country. Questions: What is the identity of the Malvaceae species collected? Is it a taxonomic national or regional novelty? Species of study: Malvaceae, Malvoideae, Pavonia. Study site and dates: Yucatan Peninsula, Mexico, 2021–2022. Methods: Botanical specimens were collected and determined taxonomically through the use of specialized keys, and consulting of botanical collections. The conservation status was assessed using the IUCN methodology. Results: The specimens collected at the study site do not represent an undescribed species but instead Pavonia paludicola Nicolson ex Fryxell, which is a new record for Mexico. The species is assessed as Least Concern (LC) along its full distributional range whereas the Yucatan population is assessed as Data Deficient (DD) at this time. Furthermore, we offer a key to the two species of Pavonia in the Mexican portion of the Yucatan Peninsula, the second being P. schiedeana Steud., whose conservation status is assessed as Least concerned (LC). Conclusion: With the report of Pavonia paludicola, thirty-three species of the genus are now recognized from Mexico, two of which occur in the Mexican portion of the Yucatan Peninsula
    corecore