16 research outputs found

    Room temperature coherent control of coupled single spins in solid

    Get PDF
    Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state systems, control of quantum correlations has attracted widespread attention because of applications in quantum computing. Such coherent coupling has been demonstrated in a variety of systems at low temperature1, 2. Of all quantum systems, spins are potentially the most important, because they offer very long phase memories, sometimes even at room temperature. Although precise control of spins is well established in conventional magnetic resonance3, 4, existing techniques usually do not allow the readout of single spins because of limited sensitivity. In this paper, we explore dipolar magnetic coupling between two single defects in diamond (nitrogen-vacancy and nitrogen) using optical readout of the single nitrogen-vacancy spin states. Long phase memory combined with a defect separation of a few lattice spacings allow us to explore the strong magnetic coupling regime. As the two-defect system was well-isolated from other defects, the long phase memory times of the single spins was not diminished, despite the fact that dipolar interactions are usually seen as undesirable sources of decoherence. A coherent superposition of spin pair quantum states was achieved. The dipolar coupling was used to transfer spin polarisation from a nitrogen-vacancy centre spin to a nitrogen spin, with optical pumping of a nitrogen-vacancy centre leading to efficient initialisation. At the level anticrossing efficient nuclear spin polarisation was achieved. Our results demonstrate an important step towards controlled spin coupling and multi-particle entanglement in the solid state

    Using in-Vehicle Sensor Data for Naturalistic Driving Analysis

    No full text
    International audienc

    Research and Science Today No. 2(6)/2013

    No full text
    RESEARCH AND SCIENCE TODAY is a biannual science journal established in 2011. The journal is an informational platform that publishes assessment articles and the results of various scientific research carried out by academics. We provide the authors with the opportunity to create and/or perfect their science writing skills. Thus, each issue of the journal (two per year and at least two supplements) will contain professional articles from any academic field, authored by domestic and international academics. The goal of this journal is to pass on relevant information to undergraduate, graduate, and post-graduate students as well as to fellow academics and researchers; the topics covered are unlimited, considering its multi-disciplinary profile. Regarding the national and international visibility of Research and Science Today, it is indexed in over 30 international databases (IDB) and is present in over 200 online libraries and catalogues; therefore, anybody can easily consult the articles featured in each issue by accessing the databases or simply the website
    corecore