65 research outputs found

    Performance function for time-jittered equispaced sampling wattmeters

    Get PDF
    This paper evaluates the effect of time-jitter in the equally spaced sampling wattmeters on the hypothesis of equal effects in the two channels and a jitter uncorrelated with the input signals. It is shown that time-jitter, which is a random fluctuation with respect to the nominal sampling time, introduces a frequency limitation which is evaluated together with that due to the sampling strategy and filtering algorithm. The theoretical results are compared with the simulated one

    The effect of time-jitter in equispaced sampling wattmeters

    Get PDF
    This paper evaluates the effect of time-jitters in the equally spaced sampling wattmeters on the hypothesis of jitters uncorrelated with the input signals. The general case of two distinct time-jitters is considered, one common to the two channels and the other different for each one of them. The performance of the wattmeter has been evaluated by considering the asymptotic statistic parameters of the output. It has been shown that the different time-jitters introduce a bias and that both time-jitters contribute to the variance of the output. In any case, time-jitters introduce further bandwidth limitations which must be taken into account in the wattmeter accuracy evaluation. The theoretical results have been compared with simulated and experimental findings. Experimental results were obtained with a prototype in which both common and different time-jitters were separately added to the equally spaced sampling instants of the two input channels. In both cases, all the results were in good agreement with theoretical expectation

    Implementation and performance evaluation of a broad-band power spectrum analyzer

    Full text link

    Recursive random-sampling strategy for a digital wattmeter

    Get PDF
    A recursive random-sampling strategy is proposed for the implementation of a digital broadband wattmeter. In this strategy each sampling instant is obtained by adding to the preceding one a predetermined constant lag plus a random increment. In order to correlate the measurement uncertainty to the bandwidth, the asymptotic mean-square error arising from the sampling strategy and the filtering algorithm is evaluated and analyzed; it has been shown that the proposed sampling strategy does not limit the bandwidth of the instrument if an appropriate statistical distribution of the random increments is selected. The theoretical results are compared with those obtained by simulating the measurement proces

    A broad-band power spectrum analyzer based on twin-channel delayed sampling

    Full text link

    Implementation and performance evaluation of a broadband digital harmonic vector voltmeter

    Get PDF
    A broadband digital harmonic vector voltmeter proposed previously and studied theoretically by the authors was implemented using a special-purpose, random sampling strategy, to avoid the bandwidth limitations due to the finite conversion time of the sample-and-hold and analog-to-digital-conversion (S/H-ADC) devices. The experimental results have shown that the bandwidth of the instrument is not limited by the finite conversion time of S/H-ADC devices, since good accuracy can be achieved even when the average sampling frequency is much lower than the signal bandwidth. The amplitude and phase uncertainty, with sinusoidal test signals up to 1 MHz and an average sampling rate of 10 kHz, was found to be lower than 3% and 0.03 rad, respectively. For more careful testing of the broadband performance of our instrument, we also carried out two-frequency, variable order harmonic measurements, which showed good accuracy (amplitude error less than 1.5% and phase error less than 0.03 rad) with harmonics up to 300 kHz. Reasonable accuracy (i.e., sufficient to correctly reconstruct the actual signal waveform) was also found with a highly distorted square-wave signa

    Penetration of ultraviolet‐B radiation in oligotrophic regions of the oceans during the Malaspina 2010 expedition

    Get PDF
    Few studies have investigated ultraviolet (UV) radiation in the open ocean besides its harmful effects on organisms and influence on biogeochemical processes. Here, we assessed UV attenuation, with particular focus on UV‐B, across the (sub)tropical ocean during the Malaspina 2010 Circumnavigation. Vertical UV radiometer profiles together with Chl‐ a concentration, and UV absorption by CDOM ( a CDOM ( λ )) and by suspended particulate matter ( a p ( λ )) were measured at 117 stations. At photosynthetically active radiation (PAR) and across UV‐A and UV‐B wavelengths, the lowest downwelling attenuation coefficients ( K d ) during the expedition were recorded in ultra‐oligotrophic regions at 5°–15°S (mean K d (305 nm): 0.129 m −1 , mean K d (313 nm): 0.107 m −1 ) in the Indian and South Pacific Oceans. The waters here were comparatively more transparent than at 5°–15°N (mean K d (305 nm): 0.239 m −1 , mean K d (313 nm): 0.181 m −1 ) where equatorial upwelling occurs. K d was highest near the Costa Rica Dome ( K d (313 nm): 0.226 m −1 ) and at the confluence of the Benguela and Agulhas currents ( K d (313 nm): 0.251 m −1 ). The contribution of a p ( λ ) toward nonwater absorption ( a nw ( λ )) was significantly lower at 305 nm than at 313 and 320 nm, suggesting the contribution of absorption by detritus and phytoplankton particles decreases compared with that of CDOM absorption as UV‐B wavelength decreases. Both a CDOM ( λ ) and a p ( λ ) at UV‐B wavelengths were lowest in the Indian Ocean whereas K d was lowest in the South Pacific. This finding emphasizes that other factors besides absorption, such as scattering by reflective phytoplankton or inorganic particles, strongly influence UV‐B attenuation in open ocean waters.Plain Language Summary: We assessed water transparency to UV‐B radiation across the tropical and subtropical ocean as part of the Malaspina 2010 Expedition. UV‐B radiometer profiles, Chlorophyll‐a, and UV‐B absorption by organic matter and suspended particles were measured at 117 stations. The most UV‐B transparent waters were found in regions where nutrients are extremely low, particularly at 5°–15°S in the Indian and South Pacific Oceans. Here, ocean waters were considerably more transparent than 5°–15°N, which suggests that at a given depth southern hemisphere marine organisms experience higher UV‐B exposure than their northern counterparts. The least UV‐B transparent waters were near the Costa Rica Dome and at the confluence of the Benguela and Agulhas currents. UV‐B absorption by organic matter and suspended particles, and Chl‐ a concentration were lowest in the Indian Ocean. The contribution of suspended particles toward nonwater absorption was significantly lower at 305 nm than at 313 and 320 nm, and higher in the clearest waters of the Indian Ocean than in the Subtropical South Pacific. Absorptions by organic matter and suspended particles were lowest in the Indian Ocean whereas UV‐B attenuation was lowest in the South Pacific, which highlights the complex relationship between optical properties in the UV‐B spectrum.Ministerio de Ciencia e InnovaciĂłn | Ref. CSD2008-00077King Abdullah University of Science and Technology | Ref. BAS/1/1072-01-0

    A Nonlinear Dynamic Model for Performance Analysis of Large-Signal Amplifiers in Communication Systems

    Full text link

    Performance function for time-jittered equispaced sampling wattmeters

    Full text link
    • 

    corecore