1,105 research outputs found

    Lattice theory for nonrelativistic fermions in one spatial dimension

    Full text link
    I derive a loop representation for the canonical and grand-canonical partition functions for an interacting four-component Fermi gas in one spatial dimension and an arbitrary external potential. The representation is free of the "sign problem" irrespective of population imbalance, mass imbalance, and to a degree, sign of the interaction strength. This property is in sharp contrast with the analogous three-dimensional two-component interacting Fermi gas, which exhibits a sign problem in the case of unequal masses, chemical potentials, and repulsive interactions. The one-dimensional system is believed to exhibit many phenomena in common with its three-dimensional counterpart, including an analog of the BCS-BEC crossover, and nonperturbative universal few- and many-body physics at scattering lengths much larger than the range of interaction, making the theory an interesting candidate for numerical study. Positivity of the probability measure for the partition function allows for a mean-field treatment of the model; here, I present such an analysis for the interacting Fermi gas in the SU(4) (unpolarized, mass-symmetric) limit, and demonstrate that there exists a phase in which a continuum limit may be defined.Comment: 12 pages, 6 figures, references adde

    Bipolaron-SO(5) Non-Fermi Liquid in a Two-channel Anderson Model with Phonon-assisted Hybridizations

    Full text link
    We analyze non-Fermi liquid (NFL) properties along a line of critical points in a two-channel Anderson model with phonon-assisted hybridizations. We succeed in identifying hidden nonmagnetic SO(5) degrees of freedom for valence-fluctuation regime and analyze the model on the basis of boundary conformal field theory. We find that the NFL spectra along the critical line, which is the same as those in the two-channel Kondo model, can be alternatively derived by a fusion in the nonmagnetic SO(5) sector. The leading irrelevant operators near the NFL fixed points vary as a function of Coulomb repulsion U; operators in the spin sector dominate for large U, while those in the SO(5) sector do for small U, and we confirm this variation in our numerical renormalization group calculations. As a result, the thermodynamic singularity for small U differs from that of the conventional two-channel Kondo problem. Especially, the impurity contribution to specific heat is proportional to temperature and bipolaron fluctuations, which are coupled electron-phonon fluctuations, diverge logarithmically at low temperatures for small U.Comment: 16 pages, 4 figures, 3 table

    Boundary-induced violation of the Dirac fermion parity and its signatures in local and global tunneling spectra of graphene

    Full text link
    Extended defects in graphene, such as linear edges, break the translational invariance and can also have an impact on the symmetries specific to massless Dirac-like quasiparticles in this material. The paper examines the consequences of a broken Dirac fermion parity in the framework of the effective boundary conditions varying from the Berry-Mondragon mass confinement to a zigzag edge. The parity breaking reflects the structural sublattice asymmetry of zigzag-type edges and is closely related to the previously predicted time-reversal symmetric edge states. We calculate the local and global densities of the edge states and show that they carry a specific polarization, resembling, to some extent, that of spin-polarized materials. The lack of the parity leads to a nonanalytical particle-hole asymmetry in the edge-state properties. We use our findings to interpret recently observed tunneling spectra in zigzag-terminated graphene. We also propose a graphene-based tunneling device where the particle-hole asymmetric edge states result in a strongly nonlinear conductance-voltage characteristics, which could be used to manipulate the tunneling transport.Comment: 8 pages, 5 figures, to be published in Phys. Rev.

    Complexified Path Integrals and the Phases of Quantum Field Theory

    Full text link
    The path integral by which quantum field theories are defined is a particular solution of a set of functional differential equations arising from the Schwinger action principle. In fact these equations have a multitude of additional solutions which are described by integrals over a complexified path. We discuss properties of the additional solutions which, although generally disregarded, may be physical with known examples including spontaneous symmetry breaking and theta vacua. We show that a consideration of the full set of solutions yields a description of phase transitions in quantum field theories which complements the usual description in terms of the accumulation of Lee-Yang zeroes. In particular we argue that non-analyticity due to the accumulation of Lee-Yang zeros is related to Stokes phenomena and the collapse of the solution set in various limits including but not restricted to, the thermodynamic limit. A precise demonstration of this relation is given in terms of a zero dimensional model. Finally, for zero dimensional polynomial actions, we prove that Borel resummation of perturbative expansions, with several choices of singularity avoiding contours in the complex Borel plane, yield inequivalent solutions of the action principle equations.Comment: 15 pages, 9 figures (newer version has better images

    The Potts-q random matrix model : loop equations, critical exponents, and rational case

    Get PDF
    In this article, we study the q-state Potts random matrix models extended to branched polymers, by the equations of motion method. We obtain a set of loop equations valid for any arbitrary value of q. We show that, for q=2-2 \cos {l \over r} \pi (l, r mutually prime integers with l < r), the resolvent satisfies an algebraic equation of degree 2 r -1 if l+r is odd and r-1 if l+r is even. This generalizes the presently-known cases of q=1, 2, 3. We then derive for any 0 \leq q \leq 4 the Potts-q critical exponents and string susceptibility.Comment: 7 pages, submitted to Phys. Letters

    The scaling limit of the energy correlations in non integrable Ising models

    Get PDF
    We obtain an explicit expression for the multipoint energy correlations of a non solvable two-dimensional Ising models with nearest neighbor ferromagnetic interactions plus a weak finite range interaction of strength λ\lambda, in a scaling limit in which we send the lattice spacing to zero and the temperature to the critical one. Our analysis is based on an exact mapping of the model into an interacting lattice fermionic theory, which generalizes the one originally used by Schultz, Mattis and Lieb for the nearest neighbor Ising model. The interacting model is then analyzed by a multiscale method first proposed by Pinson and Spencer. If the lattice spacing is finite, then the correlations cannot be computed in closed form: rather, they are expressed in terms of infinite, convergent, power series in λ\lambda. In the scaling limit, these infinite expansions radically simplify and reduce to the limiting energy correlations of the integrable Ising model, up to a finite renormalization of the parameters. Explicit bounds on the speed of convergence to the scaling limit are derived.Comment: 75 pages, 11 figure

    Collinearity, convergence and cancelling infrared divergences

    Full text link
    The Lee-Nauenberg theorem is a fundamental quantum mechanical result which provides the standard theoretical response to the problem of collinear and infrared divergences. Its argument, that the divergences due to massless charged particles can be removed by summing over degenerate states, has been successfully applied to systems with final state degeneracies such as LEP processes. If there are massless particles in both the initial and final states, as will be the case at the LHC, the theorem requires the incorporation of disconnected diagrams which produce connected interference effects at the level of the cross-section. However, this aspect of the theory has never been fully tested in the calculation of a cross-section. We show through explicit examples that in such cases the theorem introduces a divergent series of diagrams and hence fails to cancel the infrared divergences. It is also demonstrated that the widespread practice of treating soft infrared divergences by the Bloch-Nordsieck method and handling collinear divergences by the Lee-Nauenberg method is not consistent in such cases.Comment: 29 pages, 17 figure

    Electron-positron pair creation in a vacuum by an electromagnetic field in 3+1 and lower dimensions

    Get PDF
    We calculate the probability of electron-positron pair creation in vacuum in 3+1 dimensions by an external electromagnetic field composed of a constant uniform electric field and a constant uniform magnetic field, both of arbitrary magnitudes and directions. The same problem is also studied in 2+1 and 1+1 dimensions in appropriate external fields and similar results are obtained.Comment: REVTeX, 10 pages, no figure, a brief note and some more references added in the proo

    The Euler-Heisenberg Lagrangian beyond one loop

    Full text link
    We review what is presently known about higher loop corrections to the Euler-Heisenberg Lagrangian and its Scalar QED analogue. The use of those corrections as a tool for the study of the properties of the QED perturbation series is outlined. As a further step in a long-term effort to prove or disprove the convergence of the N photon amplitudes in the quenched approximation, we present a parameter integral representation of the three-loop Euler-Heisenberg Lagrangian in 1+1 dimensional QED, obtained in the worldline formalism.Comment: 11 pages, 2 figures, talk given by Christian Schubert at QFEXT11, Benasque, Spain, Sept. 18-24, 2011, to appear in the conference proceeding

    Conformal invariance in 2-dimensional discrete field theory

    Full text link
    A discretized massless wave equation in two dimensions, on an appropriately chosen square lattice, exactly reproduces the solutions of the corresponding continuous equations. We show that the reason for this exact solution property is the discrete analog of conformal invariance present in the model, and find more general field theories on a two-dimensional lattice that exactly solve their continuous limit equations. These theories describe in general non-linearly coupled bosonic and fermionic fields and are similar to the Wess-Zumino-Witten model.Comment: 18 pages, RevTeX, 2 figures included; revision of title and introductio
    • …
    corecore