21 research outputs found
The Boundary Conformal Field Theories of the 2D Ising critical points
We present a new method to identify the Boundary Conformal Field Theories
(BCFTs) describing the critical points of the Ising model on the strip. It
consists in measuring the low-lying excitation energies spectra of its quantum
spin chain for different boundary conditions and then to compare them with
those of the different boundary conformal field theories of the
minimal model.Comment: 7 pages, no figures. Talk given at the XXth International Conference
on Integrable Systems and Quantum Symmetries (ISQS-20). Prague, June 201
Graphs and Reflection Groups
It is shown that graphs that generalize the ADE Dynkin diagrams and have
appeared in various contexts of two-dimensional field theory may be regarded in
a natural way as encoding the geometry of a root system. After recalling what
are the conditions satisfied by these graphs, we define a bilinear form on a
root system in terms of the adjacency matrices of these graphs and undertake
the study of the group generated by the reflections in the hyperplanes
orthogonal to these roots. Some ``non integrally laced " graphs are shown to be
associated with subgroups of these reflection groups. The empirical relevance
of these graphs in the classification of conformal field theories or in the
construction of integrable lattice models is recalled, and the connections with
recent developments in the context of supersymmetric theories and
topological field theories are discussed.Comment: 42 pages TEX file, harvmac and epsf macros, AMS fonts optional,
uuencoded, 8 figures include
Correlation Functions of Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups
The Harish-Chandra correlation functions, i.e. integrals over compact groups
of invariant monomials prod tr{X^{p_1} Omega Y^{q_1} Omega^dagger X^{p_2} ...
with the weight exp tr{X Omega Y Omega^dagger} are computed for the orthogonal
and symplectic groups. We proceed in two steps. First, the integral over the
compact group is recast into a Gaussian integral over strictly upper triangular
complex matrices (with some additional symmetries), supplemented by a summation
over the Weyl group. This result follows from the study of loop equations in an
associated two-matrix integral and may be viewed as the adequate version of
Duistermaat-Heckman's theorem for our correlation function integrals. Secondly,
the Gaussian integration over triangular matrices is carried out and leads to
compact determinantal expressions.Comment: 58 pages; Acknowledgements added; small corrections in appendix A;
minor changes & Note Adde
Towards a fully automated computation of RG-functions for the 3- O(N) vector model: Parametrizing amplitudes
Within the framework of field-theoretical description of second-order phase
transitions via the 3-dimensional O(N) vector model, accurate predictions for
critical exponents can be obtained from (resummation of) the perturbative
series of Renormalization-Group functions, which are in turn derived
--following Parisi's approach-- from the expansions of appropriate field
correlators evaluated at zero external momenta.
Such a technique was fully exploited 30 years ago in two seminal works of
Baker, Nickel, Green and Meiron, which lead to the knowledge of the
-function up to the 6-loop level; they succeeded in obtaining a precise
numerical evaluation of all needed Feynman amplitudes in momentum space by
lowering the dimensionalities of each integration with a cleverly arranged set
of computational simplifications. In fact, extending this computation is not
straightforward, due both to the factorial proliferation of relevant diagrams
and the increasing dimensionality of their associated integrals; in any case,
this task can be reasonably carried on only in the framework of an automated
environment.
On the road towards the creation of such an environment, we here show how a
strategy closely inspired by that of Nickel and coworkers can be stated in
algorithmic form, and successfully implemented on the computer. As an
application, we plot the minimized distributions of residual integrations for
the sets of diagrams needed to obtain RG-functions to the full 7-loop level;
they represent a good evaluation of the computational effort which will be
required to improve the currently available estimates of critical exponents.Comment: 54 pages, 17 figures and 4 table
Foldy-Wouthuysen Transformation for a Spinning Particle with Anomalous Magnetic Moment
We study the Foldy-Wouthuysen transformation for a pseudoclassical particle
with anomalous magnetic moment in an external, stationary electromagnetic
field. We show that the transformation can be expressed in a closed form for
neutral particles in purely electrostatic fields and for neutral and charged
particles in external magnetostatic fields. The explicit expressions of the
diagonalized Hamiltonians are calculated.Comment: 10 page
Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks
We analyze the partition function of the Ising model on graphs of two
different types: complete graphs, wherein all nodes are mutually linked and
annealed scale-free networks for which the degree distribution decays as
. We are interested in zeros of the partition function
in the cases of complex temperature or complex external field (Fisher and
Lee-Yang zeros respectively). For the model on an annealed scale-free network,
we find an integral representation for the partition function which, in the
case , reproduces the zeros for the Ising model on a complete
graph. For we derive the -dependent angle at which the
Fisher zeros impact onto the real temperature axis. This, in turn, gives access
to the -dependent universal values of the critical exponents and
critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a
difference in their behaviour for the Ising model on a complete graph and on an
annealed scale-free network when . Whereas in the former case the
zeros are purely imaginary, they have a non zero real part in latter case, so
that the celebrated Lee-Yang circle theorem is violated.Comment: 36 pages, 31 figure
Combinatorics of the Modular Gro up II: The Kontsevich Integrals, Saclay preprint SPhT/92-001
Abstract We study algebraic aspects of Kontsevich integrals as generating functions for intersection theory over moduli space and review the derivation of Virasoro and KdV constraints. Contents 0. Introduction.............................. 1 1. Intersection numbers........................... 2 2. The Kontsevich integral.......................... 5 2.1. The main theorem..........................
Combinatorics of the modular group II. The Kontsevich integrals
URL: http://www-spht.cea.fr/articles/T92/001International audienceCombinatorics of the modular group II. The Kontsevich integral