28 research outputs found
Genetic factors are important determinants of impaired growth after infant cardiac surgery
ObjectivesWe sought to estimate the prevalence and identify the predictors of impaired growth after infant cardiac surgery.MethodsWe performed a secondary analysis of a prospective study of the role of apolipoprotein E gene polymorphisms on neurodevelopment in young children after infant cardiac surgery. Prevalence estimates for growth velocity were derived by using anthropometric measures (weight and head circumference) obtained at birth and at 4 years of age. Genetic evaluation was also performed. Growth measure z scores were calculated by using World Health Organization Child Growth Standards. Growth velocity was evaluated by using 2 different techniques: first by clustering the children into one of 3 growth velocity subgroups based on z scores (impaired growth, difference < −0.5 standard deviation; stable growth, difference of −0.5 to 0.5 standard deviation; and improving growth, difference > 0.5 SD) and second by using continuous difference scores. Statistical analyses were conducted with a combination of proportional odds models for the ordered categories and simple linear regression for the continuous outcomes.ResultsThree hundred nineteen full-term subjects had complete anthropometric measures for weight and head circumference at birth and 4 years. The cohort was 56% male. Genetic examinations were available for 97% (309/319) of the cohort (normal, 74%; definite or suspected genetic abnormality, 26%). Frequency counts for weight categories were as follows: impaired growth, 37%; stable growth, 31%; and improving growth, 32%. Frequency counts for head circumference categories were as follows: impaired growth, 39%; stable growth, 28%; and improving growth, 33%. The presence of a definite or suspected genetic syndrome (P = .04) was found to be a predictor of impaired growth for weight but not for head circumference. When growth z scores were used as continuous outcomes, the apolipoprotein E ε2 allele was found to be predictive of lower z scores for both weight (P = .02) and head circumference (P = .03).ConclusionsImpaired growth for both weight and head circumference is common (both >30%) in this cohort of children after infant cardiac surgery. Both the apolipoprotein E ε2 allele and the presence of a definite or suspected genetic syndrome were associated with impaired weight growth velocity. The apolipoprotein E ε2 allele was also associated with impaired growth velocity for head circumference. Persistent poor growth might have long-term implications for the health and development of children with congenital heart defects
Basketball game-related statistics that discriminate between teams season-long success
The aim of the present study was to identify the game-related statistics that discriminate between season-long successful and unsuccessful basketball teams participating in the Spanish Basketball League (LEB1). The sample included all 145 average records per season from the 870 games played between the 2000-2001 and the 2005-2006 regular seasons. The following game-related statistics were gathered from the official box scores of the Spanish Basketball Federation: 2- and 3-point field-goal attempts (both successful and unsuccessful), free-throws (both successful and unsuccessful), defensive and offensive rebounds, assists, steals, turnovers, blocks (both made and received), and fouls (both committed and received). To control for season variability, all results were normalized to minutes played each season and then converted to z-scores. The results allowed discrimination between best and worst teams' performances through the following game-related statistics: assists (SC=0.47), steals (SC=0.34), and blocks (SC=0.30). The function obtained correctly classified 82.4% of the cases. In conclusion, season-long performance may be supported by players' and teams' passing skills and defensive preparation
Genetic Testing in Pediatric Left Ventricular Noncompaction
Background: Left ventricular noncompaction (LVNC) can occur in isolation or can co-occur with a cardiomyopathy phenotype or cardiovascular malformation. The yield of cardiomyopathy gene panel testing in infants, children, and adolescents with a diagnosis of LVNC is unknown. By characterizing a pediatric population with LVNC, we sought to determine the yield of cardiomyopathy gene panel testing, distinguish the yield of testing for LVNC with or without co-occurring cardiac findings, and define additional factors influencing genetic testing yield.
Methods and results: One hundred twenty-eight individuals diagnosed with LVNC at ≤21 years of age were identified, including 59% with idiopathic pathogenesis, 32% with familial disease, and 9% with a syndromic or metabolic diagnosis. Overall, 75 individuals had either cardiomyopathy gene panel (n=65) or known variant testing (n=10). The yield of cardiomyopathy gene panel testing was 9%. The severity of LVNC by imaging criteria was not associated with positive genetic testing, co-occurring cardiac features, pathogenesis, family history, or myocardial dysfunction. Individuals with isolated LVNC were significantly less likely to have a positive genetic testing result compared with those with LVNC and co-occurring cardiomyopathy (0% versus 12%, respectively; P<0.01).
Conclusions: Genetic testing should be considered in individuals with cardiomyopathy co-occurring with LVNC. These data do not suggest an indication for cardiomyopathy gene panel testing in individuals with isolated LVNC in the absence of a family history of cardiomyopathy