41 research outputs found

    Hot Cell-Direct PCR Aimed at Specific Cell Detection

    Get PDF
    Since the polymerase chain reaction (PCR) was proposed, it has become an essential method in the field of biological gene analysis, providing a method to amplify DNA sequences of interest. To detect and/or analyze genes in cells, the gene or expressed gene must first be extracted before PCR. This procedure takes time and may result in the loss of samples. In order to avoid such drawbacks, two methods, hot cell-direct PCR and reverse transcription-PCR (RT-PCR), were invented, to detect genes in cells. Using hot cell-direct PCR, specific genes in microbial cells such as invA in Salmonella enterica have been easily detected and applied to discriminate Archaea from bacteria. As hot cell-direct PCR and RT-PCR are fairly simple processes, they can be applied to detect genes in single cells. We developed an original compact disc (CD)-shaped microfluidic device with microchambers for single-cell isolation and a detection system for expressed genes in isolated single cells in a microchamber on the device. We succeeded in the detection of PCR and RT-PCR products in individual cells and successfully detected S. enterica cells by hot cell-direct PCR. Expressed genes in Jurkat cells—human leukemia T cells—were analyzed by this method

    Effective Sampling in the Configurational Space by the Multicanonical-Multioverlap Algorithm

    Full text link
    We propose a new generalized-ensemble algorithm, which we refer to as the multicanonical-multioverlap algorithm. By utilizing a non-Boltzmann weight factor, this method realizes a random walk in the multi-dimensional, energy-overlap space and explores widely in the configurational space including specific configurations, where the overlap of a configuration with respect to a reference state is a measure for structural similarity. We apply the multicanonical-multioverlap molecular dynamics method to a penta peptide, Met-enkephalin, in vacuum as a test system. We also apply the multicanonical and multioverlap molecular dynamics methods to this system for the purpose of comparisons. We see that the multicanonical-multioverlap molecular dynamics method realizes effective sampling in the configurational space including specific configurations more than the other two methods. From the results of the multicanonical-multioverlap molecular dynamics simulation, furthermore, we obtain a new local-minimum state of the Met-enkephalin system.Comment: 15 pages, (Revtex4), 9 figure

    Genome-Wide Association Study Confirming Association of HLA-DP with Protection against Chronic Hepatitis B and Viral Clearance in Japanese and Korean

    Get PDF
    Hepatitis B virus (HBV) infection can lead to serious liver diseases, including liver cirrhosis (LC) and hepatocellular carcinoma (HCC); however, about 85–90% of infected individuals become inactive carriers with sustained biochemical remission and very low risk of LC or HCC. To identify host genetic factors contributing to HBV clearance, we conducted genome-wide association studies (GWAS) and replication analysis using samples from HBV carriers and spontaneously HBV-resolved Japanese and Korean individuals. Association analysis in the Japanese and Korean data identified the HLA-DPA1 and HLA-DPB1 genes with Pmeta = 1.89×10−12 for rs3077 and Pmeta = 9.69×10−10 for rs9277542. We also found that the HLA-DPA1 and HLA-DPB1 genes were significantly associated with protective effects against chronic hepatitis B (CHB) in Japanese, Korean and other Asian populations, including Chinese and Thai individuals (Pmeta = 4.40×10−19 for rs3077 and Pmeta = 1.28×10−15 for rs9277542). These results suggest that the associations between the HLA-DP locus and the protective effects against persistent HBV infection and with clearance of HBV were replicated widely in East Asian populations; however, there are no reports of GWAS in Caucasian or African populations. Based on the GWAS in this study, there were no significant SNPs associated with HCC development. To clarify the pathogenesis of CHB and the mechanisms of HBV clearance, further studies are necessary, including functional analyses of the HLA-DP molecule

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Development of a Noise Reduction Filter Algorithm for Pediatric Body Images in Multidetector CT

    No full text
    Recently, several types of post-processing image filter which was designed to reduce noise allowing a corresponding dose reduction in CT images have been proposed and these were reported to be useful for noise reduction of CT images of adult patients. However, these have not been reported on adaptation for pediatric patients. Because they are not very effective with small (<20 cm) display fields of view, they could not be used for pediatric (e.g., premature babies and infants) body CT images. In order to solve this restriction, we have developed a new noise reduction filter algorithm which can be applicable for pediatric body CT images. This algorithm is based on a three-dimensional post processing, in which output pixel values are calculated by multi-directional, one-dimensional median filters on original volumetric datasets. The processed directions were selected except in in-plane (axial plane) direction, and consequently the in-plane spatial resolution was not affected by the filter. Also, in other directions, the spatial resolutions including slice thickness were almost maintained due to a characteristic of non-linear filtering of the median filter. From the results of phantom studies, the proposed algorithm could reduce standard deviation values as a noise index by up to 30% without affecting the spatial resolution of all directions, and therefore, contrast-to-noise ratio was improved by up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of pediatric body CT images
    corecore