309 research outputs found

    Salusins: Potential Use as a Biomarker for Atherosclerotic Cardiovascular Diseases

    Get PDF
    Human salusin-α and salusin-β are related peptides produced from prosalusin. Bolus injection of salusin-β into rats induces more profound hypotension and bradycardia than salusin-α. Central administration of salusin-β increases blood pressure via release of norepinephrine and arginine-vasopressin. Circulating levels of salusin-α and salusin-β are lower in patients with essential hypertension. Salusin-β exerts more potent mitogenic effects on human vascular smooth muscle cells (VSMCs) and fibroblasts than salusin-α. Salusin-β accelerates inflammatory responses in human endothelial cells and monocyte-endothelial adhesion. Human macrophage foam cell formation is stimulated by salusin-β but suppressed by salusin-α. Chronic salusin-β infusion into apolipoprotein E-deficient mice enhances atherosclerotic lesions; salusin-α infusion reduces lesions. Salusin-β is expressed in proliferative neointimal lesions of porcine coronary arteries after stenting. Salusin-α and salusin-β immunoreactivity have been detected in human coronary atherosclerotic plaques, with dominance of salusin-β in macrophage foam cells, VSMCs, and fibroblasts. Circulating salusin-β levels increase and salusin-α levels decrease in patients with coronary artery disease. These findings suggest that salusin-β and salusin-α may contribute to proatherogenesis and antiatherogenesis, respectively. Increased salusin-β and/or decreased salusin-α levels in circulating blood and vascular tissue are closely linked with atherosclerosis. Salusin-α and salusin-β could be candidate biomarkers and therapeutic targets for atherosclerotic cardiovascular diseases

    RECLU:a pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE)

    Get PDF
    BACKGROUND: Next generation sequencing based technologies are being extensively used to study transcriptomes. Among these, cap analysis of gene expression (CAGE) is specialized in detecting the most 5’ ends of RNA molecules. After mapping the sequenced reads back to a reference genome CAGE data highlights the transcriptional start sites (TSSs) and their usage at a single nucleotide resolution. RESULTS: We propose a pipeline to group the single nucleotide TSS into larger reproducible peaks and compare their usage across biological states. Importantly, our pipeline discovers broad peaks as well as the fine structure of individual transcriptional start sites embedded within them. We assess the performance of our approach on a large CAGE datasets including 156 primary cell types and two cell lines with biological replicas. We demonstrate that genes have complicated structures of transcription initiation events. In particular, we discover that narrow peaks embedded in broader regions of transcriptional activity can be differentially used even if the larger region is not. CONCLUSIONS: By examining the reproducible fine scaled organization of TSS we can detect many differentially regulated peaks undetected by previous approaches

    Boundary Action of N=2 Super-Liouville Theory

    Full text link
    We derive a boundary action of N=2 super-Liouville theory which preserves both N=2 supersymmetry and conformal symmetry by imposing explicitly T=TˉT={\bar T} and G=GˉG={\bar G}. The resulting boundary action shows a new duality symmetry.Comment: 15 pages; One reference is adde

    Conserved temporal ordering of promoter activation implicates common mechanisms governing the immediate early response across cell types and stimuli

    Get PDF
    Conserved temporal precedence between IEGs (light blue nodes) and other protein-coding genes (green nodes) is shown by directed edges. Genes annotated with the GO term 'response to endoplasmic reticulum stress' (GO:003497) have a red rectangle around the gene name; red squares indicate genes with CAGE clusters enriched for XBP1 transcription factor binding sites

    Protein-protein interactions of the hyperthermophilic archaeon Pyrococcus horikoshii OT3

    Get PDF
    BACKGROUND: Although 2,061 proteins of Pyrococcus horikoshii OT3, a hyperthermophilic archaeon, have been predicted from the recently completed genome sequence, the majority of proteins show no similarity to those from other organisms and are thus hypothetical proteins of unknown function. Because most proteins operate as parts of complexes to regulate biological processes, we systematically analyzed protein-protein interactions in Pyrococcus using the mammalian two-hybrid system to determine the function of the hypothetical proteins. RESULTS: We examined 960 soluble proteins from Pyrococcus and selected 107 interactions based on luciferase reporter activity, which was then evaluated using a computational approach to assess the reliability of the interactions. We also analyzed the expression of the assay samples by western blot, and a few interactions by in vitro pull-down assays. We identified 11 hetero-interactions that we considered to be located at the same operon, as observed in Helicobacter pylori. We annotated and classified proteins in the selected interactions according to their orthologous proteins. Many enzyme proteins showed self-interactions, similar to those seen in other organisms. CONCLUSION: We found 13 unannotated proteins that interacted with annotated proteins; this information is useful for predicting the functions of the hypothetical Pyrococcus proteins from the annotations of their interacting partners. Among the heterogeneous interactions, proteins were more likely to interact with proteins within the same ortholog class than with proteins of different classes. The analysis described here can provide global insights into the biological features of the protein-protein interactions in P. horikoshii

    Reversal of neuroinflammation in novel GS model mice by single i.c.v. administration of CHO-derived rhCTSA precursor protein

    Get PDF
    Galactosialidosis (GS) is a lysosomal cathepsin A (CTSA) deficiency. It associates with a simultaneous decrease of neuraminidase 1 (NEU1) activity and sialylglycan storage. Central nervous system (CNS) symptoms reduce the quality of life of juvenile/adult-type GS patients, but there is no effective therapy. Here, we established a novel GS model mouse carrying homozygotic Ctsa IVS6+1g→a mutation causing partial exon 6 skipping with concomitant deficiency of Ctsa/Neu1. The GS mice developed juvenile/adult GS-like symptoms, such as gargoyle-like face, edema, proctoprosia due to sialylglycan accumulation, and neurovisceral inflammation, including activated microglia/macrophage appearance and increase of inflammatory chemokines. We produced human CTSA precursor proteins (proCTSA), a homodimer carrying terminal mannose 6-phosphate (M6P)-type N-glycans. The CHO-derived proCTSA was taken up by GS patient-derived fibroblasts via M6P receptors and delivered to lysosomes. Catalytically active mature CTSA showed a shorter half-life due to intralysosomal proteolytic degradation. Following single i.c.v. administration, proCTSA was widely distributed, restored the Neu1 activity, and reduced the sialylglycans accumulated in brain regions. Moreover, proCTSA suppressed neuroinflammation associated with reduction of activated microglia/macrophage and up-regulated Mip1α. The results show therapeutic effects of intracerebrospinal enzyme replacement utilizing CHO-derived proCTSA and suggest suppression of CNS symptoms
    corecore