87 research outputs found

    The Wnt/beta-catenin pathway posteriorizes neural tissue in <i>Xenopus </i>by an indirect mechanism requiring FGF signalling

    Get PDF
    AbstractIn order to identify factors involved in posteriorization of the central nervous system, we undertook a functional screen in Xenopus animal cap explants which involved coinjecting noggin RNA together with pools of RNA from a chick somite cDNA library. In the course of this screen, we isolated a clone encoding a truncated form of Ξ²-catenin, which induced posterior neural and dorsal mesodermal markers when coinjected with noggin in animal caps. Similar results were obtained with Xwnt-8 and Xwnt-3a, suggesting that these effects are a consequence of activating the canonical Wnt signalling pathway. To investigate whether the activation of posterior neural markers requires mesoderm induction, we performed experiments using a chimeric inducible form of Ξ²-catenin. Activation of this protein during blastula stages resulted in the induction of both posterior neural and mesodermal markers, while activation during gastrula stages induced only posterior neural markers. We show that this posteriorizing activity occurs by an indirect and noncell-autonomous mechanism requiring FGF signalling

    Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer

    Get PDF
    Primary and atmospheric cosmic-ray spectra were precisely measured with the BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve seven times higher resolution in momentum measurement. We report absolute fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and 1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.

    Modified Whole-Mount In situ Hybridization Protocol for the Detection of Transgene Expression in Electroporated Chick Embryos

    Get PDF
    hybridization. hybridization (WISH).Here we describe a modification to the WISH protocol that is essential to prevent DNA cross-hybridization and to specifically detect transgene mRNA transcripts in electroporated embryos. Our optimized WISH procedure can be applied not only to electroporated chick embryos but also to other embryos or adult tissues that have been transfected with large amounts of reporter- or expression construct DNA

    Normal growth and development in mice over-expressing the CCN family member WISP3

    Get PDF
    Loss-of-function mutations in the gene WISP3 cause the autosomal recessive human skeletal disease Progressive Pseudorheumatoid Dysplasia, whereas mice with knockout mutations of Wisp3 have no phenotype. The lack of a phenotype in the Wisp3 knockout mice has constrained studies of the protein’s in vivo function. Over-expression experiments in zebrafish indicated that WISP3 may function as a BMP and Wnt signaling modulator. To determine whether these biologic activities are retained in mice, we created two strains of transgenic mice that over-express WISP3 in a broad array of tissues. Despite strong and persistent protein over-expression, the transgenic mice remained phenotypically indistinguishable from their non-transgenic littermates. Surprisingly, WISP3 contained in conditioned medium recovered from transgenic mouse primary kidney cell cultures was able to bind BMP and to inhibit BMP signaling in vitro. Factors that account for the difference between the in vitro and in vivo activities of WISP3 remain unknown. At present, the mouse remains a challenging model organism in which to explore the biologic function of WISP3

    Dynamic and influential interaction of cancer cells with normal epithelial cells in 3D culture

    Get PDF
    BACKGROUND: The cancer microenvironment has a strong impact on the growth and dynamics of cancer cells. Conventional 2D culture systems, however, do not reflect in vivo conditions, impeding detailed studies of cancer cell dynamics. This work aims to establish a method to reveal the interaction of cancer and normal epithelial cells using 3D time-lapse. METHODS: GFP-labelled breast cancer cells, MDA-MB-231, were co-cultured with mCherry-labelled non-cancerous epithelial cells, MDCK, in a gel matrix. In the 3D culture, the epithelial cells establish a spherical morphology (epithelial sphere) thus providing cancer cells with accessibility to the basal surface of epithelia, similar to the in vivo condition. Cell movement was monitored using time-lapse analyses. Ultrastructural, immunocytochemical and protein expression analyses were also performed following the time-lapse study. RESULTS: In contrast to the 2D culture system, whereby most MDA-MB-231 cells exhibit spindle-shaped morphology as single cells, in the 3D culture the MDA-MB-231 cells were found to be single cells or else formed aggregates, both of which were motile. The single MDA-MB-231 cells exhibited both round and spindle shapes, with dynamic changes from one shape to the other, visible within a matter of hours. When co-cultured with epithelial cells, the MDA-MB-231 cells displayed a strong attraction to the epithelial spheres, and proceeded to surround and engulf the epithelial cell mass. The surrounded epithelial cells were eventually destroyed, becoming debris, and were taken into the MDA-MB-231 cells. However, when there was a relatively large population of normal epithelial cells, the MDA-MB-231 cells did not engulf the epithelial spheres effectively, despite repeated contacts. MDA-MB-231 cells co-cultured with a large number of normal epithelial cells showed reduced expression of monocarboxylate transporter-1, suggesting a change in the cell metabolism. A decreased level of gelatin-digesting ability as well as reduced production of matrix metaroproteinase-2 was also observed. CONCLUSIONS: This culture method is a powerful technique to investigate cancer cell dynamics and cellular changes in response to the microenvironment. The method can be useful for various aspects such as; different combinations of cancer and non-cancer cell types, addressing the organ-specific affinity of cancer cells to host cells, and monitoring the cellular response to anti-cancer drugs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12935-014-0108-6) contains supplementary material, which is available to authorized users

    Reph, a Regulator of Eph Receptor Expression in the Drosophila melanogaster Optic Lobe

    Get PDF
    Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression), was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system
    • …
    corecore