15 research outputs found
All-D-magainin: chirality, antimicrobial activity and proteolytic resistance
AbstractAll-D-magainin-2 was synthesized to corroborate experimentally the notion that the biological function of a surface-active peptide stems primarily from its unique amphiphilic α -helical structure. Indeed, the peptide exhibited antibacterial potency nearly identical to that of the all-L-enantiomer. Being highly resistant to proteolysis and non-hemolytic all-D-magainin might have considerable therapeutic importance
Transcriptional and Proteomic Analysis of the Aspergillus fumigatus ΔprtT Protease-Deficient Mutant
Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus
In Vitro Synergy of Caspofungin and Itraconazole against Aspergillus spp.: MIC versus Minimal Effective Concentration End Points
Caspofungin and itraconazole were studied alone and in combination against 31 clinical isolates of Aspergillus spp. according to NCCLS M38-P guidelines. MICs and microscopic minimal effective concentrations (MECs) were recorded, and synergy was calculated by using both end points. Synergy or synergy to additivity was found in 30 of 31 isolates by using MIC end points. With MEC end points no synergy was found and indifference was detected in 26 of 31 strains
In Vitro Activity of Caspofungin Combined with Sulfamethoxazole against Clinical Isolates of Aspergillus spp.
Caspofungin (CAS) inhibits fungal cell wall synthesis. Sulfamethoxazole (SMX) inhibits folate biosynthesis and is active in vitro against Aspergillus spp. We studied the activities of the combination of CAS and SMX against 31 Aspergillus isolates and compared them with that of SMX combined with amphotericin B (AMB) or itraconazole (ITC). MICs and minimal effective concentrations (MECs) were determined by the NCCLS broth microdilution method. With MIC endpoints, the combination of SMX and CAS showed synergy or synergy to additivity against 29 of 31 isolates. With MEC endpoints, synergy to additivity was found against 12 of 31 isolates and indifference was displayed against the rest of them. SMX in combination with AMB or ITC was not truly synergistic, while synergy to additivity was found for SMX-AMB and SMX-ITC against 17 of 31 and 3 of 12 isolates, respectively. No antagonism was found with any of the drug combinations. Further analysis of the synergy of CAS and SMX was performed by detailed measurement of hyphal length by microscopy and time-dependent 2,3-bis(2-methoxy-4-nitro-5-[(sulfenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT)-based hyphal damage experiments. With MEC endpoints, the combination of CAS and SMX was characterized by a greater than 50% decrease in hyphal length compared to the hyphal lengths achieved with double the concentration of each drug alone. The XTT-based hyphal damage studies showed a statistically significant (P < 0.05) reduction in viability with CAS and SMX in combination compared to the viabilities achieved with double the concentration of each drug alone. These findings support the synergy results found by using MIC endpoints and suggest that visual MEC measurements may not be sufficient to identify the synergistic interactions seen by more sensitive, quantitative methods. Animal models are required to validate the significance of the synergy of CAS and SMX against Aspergillus spp. observed in vitro
Selected enriched downregulated gene classes in the <i>ΔprtT</i> mutant vs. WT<sup>1</sup>.
<p>1Top five genes with the highest fold change are shown in each category.</p>2<p>Ergosterol biosynthesis pathway.</p>3<p>Involved in amino acid catabolism.</p
Top 50 downregulated genes plotted in ascending order by fold change.
<p>Black bars are the iron uptake genes, white bars are genes with various other annotations.</p