253 research outputs found
Structured Sparse Modelling with Hierarchical GP
In this paper a new Bayesian model for sparse linear regression with a
spatio-temporal structure is proposed. It incorporates the structural
assumptions based on a hierarchical Gaussian process prior for spike and slab
coefficients. We design an inference algorithm based on Expectation Propagation
and evaluate the model over the real data.Comment: SPARS 201
Anatomy of a stalled revolution: processes of reproduction and change in Russian women's gender ideologies
Russia’s gender revolution notoriously produced women’s economic empowerment without domestic equality. Although the Soviet state vastly expanded women’s employment, this had little impact on a starkly unequal gender division of domestic labor. Such “stalling” is common, but in Russia its extent and persistence presents a puzzle, requiring us to investigate linkages between macro-level factors and micro-level interactions regarding the gender division of domestic labor. We do this by focusing on gender ideology, an important variable explaining the gender division of domestic labor that bridges the macro-level of the gender order and the micro-interactional level. We use longitudinal qualitative data to examine continuity and change in young Russian women’s gender ideologies between 1999 and 2010. Based on analysis of 115 in-depth interviews from 23 respondents, we identify traditional and egalitarian trajectories and the processes underlying them, showing how the male breadwinner schema and an ideology of women’s independence support traditionalism, while non-traditional breadwinning and interactional support from men facilitate egalitarianism. Our analysis enables us to explain the Soviet gender paradox and distinguish sources of change in the post-Soviet era. Our theoretical contribution is to situate gender ideology in a multi-level framework, the efficacy of which we demonstrate in our empirical analysis
Dynamic Hierarchical Dirichlet Process for Abnormal Behaviour Detection in Video
This paper proposes a novel dynamic Hierarchical Dirichlet Process topic model that considers the dependence between successive observations. Conventional posterior inference algorithms for this kind of models require processing of the whole data through several passes. It is computationally intractable for massive or sequential data. We design the batch and online inference, based on the Gibbs sampling, for our model. It allows to process sequential data, incrementally updating the model by a new observation. The model is applied to abnormal behaviour detection in video sequences. A new abnormality measure is proposed for decision making. The proposed method is compared with the method based on the non-dynamic Hierarchical Dirichlet Process, for which we also derive the online Gibbs sampler and the abnormality measure. The experimental results show that the consideration of the dynamics in a topic model improves the classification performance for abnormal behaviour detection
Dynamic Hierarchical Dirichlet Process for abnormal behaviour detection in video
This paper proposes a novel dynamic Hierarchical Dirichlet Process topic model that considers the dependence between successive observations. Conventional posterior inference algorithms for this kind of models require processing of the whole data through several passes. It is computationally intractable for massive or sequential data. We design the batch and online inference algorithms, based on the Gibbs sampling, for the proposed model. It allows to process sequential data, incrementally updating the model by a new observation. The model is applied to abnormal behaviour detection in video sequences. A new abnormality measure is proposed for decision making. The proposed method is compared with the method based on the non-dynamic Hierarchical Dirichlet Process, for which we also derive the online Gibbs sampler and the abnormality measure. The results with synthetic and real data show that the consideration of the dynamics in a topic model improves the classification performance for abnormal behaviour detection.</p
Uncertainty propagation in neural networks for sparse coding
A novel method to propagate uncertainty through the soft-thresholding nonlinearity is proposed in this paper. At every layer the current distribution of the target vector is represented as a spike and slab distribution, which represents the probabilities of each variable being zero, or Gaussian-distributed. Using the proposed method of uncertainty propagation, the gradients of the logarithms of normalisation constants are derived, that can be used to update a weight distribution. A novel Bayesian neural network for sparse coding is designed utilising both the proposed method of uncertainty propagation and Bayesian inference algorithm
Anomaly detection in video with Bayesian nonparametrics
A novel dynamic Bayesian nonparametric topic model for anomaly detection in video is proposed in this paper. Batch and online Gibbs samplers are developed for inference. The paper introduces a new abnormality measure for decision making. The proposed method is evaluated on both synthetic and real data. The comparison with a non-dynamic model shows the superiority of the proposed dynamic one in terms of the classification performance for anomaly detection
Learning methods for dynamic topic modeling in automated behaviour analysis
Semisupervised and unsupervised systems provide operators with invaluable support and can tremendously reduce the operators’ load. In the light of the necessity to process large volumes of video data and provide autonomous decisions, this paper proposes new learning algorithms for activity analysis in video. The activities and behaviors are described by a dynamic topic model. Two novel learning algorithms based on the expectation maximization approach and variational Bayes inference are proposed. Theoretical derivations of the posterior estimates of model parameters are given. The designed learning algorithms are compared with the Gibbs sampling inference scheme introduced earlier in the literature. A detailed comparison of the learning algorithms is presented on real video data. We also propose an anomaly localization procedure, elegantly embedded in the topic modeling framework. It is shown that the developed learning algorithms can achieve 95% success rate. The proposed framework can be applied to a number of areas, including transportation systems, security, and surveillance
Structured Sparse Modelling with Hierarchical GP
In this paper a new Bayesian model for sparse linear regression with a spatio-temporal structure is proposed. It incorporates the structural assumptions based on a hierarchical Gaussian process prior for spike and slab coefficients. We design an inference algorithm based on Expectation Propagation and evaluate the model over the real data
Bayesian neural networks for sparse coding
Deep learning is actively used in the area of sparse coding. In current deep sparse coding methods uncertainty of predictions is rarely estimated, thus providing the results that lack the quantitative justification. Bayesian learning provides the way to estimate the uncertainty of predictions in neural networks (NNs) by imposing the prior distributions on weights, propagating the resulting uncertainty through the layers and computing the posterior distributions of predictions. We propose a novel method of propagating the uncertainty through the sparsity-promoiting layers of NNs for the first time. We design a Bayesian Learned Iterative Shrinkage-Thresholding network (BayesLIsTA). An efficient posterior inference algorithm based on probabilistic backpropagation is developed. Experiments on sparse coding show that the proposed framework provides both accurate predictions and sensible estimates of uncertainty in these predictions
- …