111 research outputs found

    Stability Properties of Strongly Magnetized Spine Sheath Relativistic Jets

    Full text link
    The linearized relativistic magnetohydrodynamic (RMHD) equations describing a uniform axially magnetized cylindrical relativistic jet spine embedded in a uniform axially magnetized relativistically moving sheath are derived. The displacement current is retained in the equations so that effects associated with Alfven wave propagation near light speed can be studied. A dispersion relation for the normal modes is obtained. Analytical solutions for the normal modes in the low and high frequency limits are found and a general stability condition is determined. A trans-Alfvenic and even a super-Alfvenic relativistic jet spine can be stable to velocity shear driven Kelvin-Helmholtz modes. The resonance condition for maximum growth of the normal modes is obtained in the kinetically and magnetically dominated regimes. Numerical solution of the dispersion relation verifies the analytical solutions and is used to study the regime of high sound and Alfven speeds.Comment: 42 pages includes 7 figures, to appear in Ap

    Giant molecular clouds as regions of particle acceleration

    Get PDF
    One of the most interesting results of investigations carried out on the satellites SAS-II and COS-B is the discovery of unidentified discrete gamma sources. Possibly a considerable part of them may well be giant molecular clouds. Gamma emission from clouds is caused by the processes with participation of cosmic rays. The estimation of the cosmic ray density in clouds has shown that for the energy E approx. = I GeV their density can 10 to 1000 times exceed the one in intercloud space. We have made an attempt to determine the mechanism which could lead to the increase in the cosmic ray density in clouds

    3D Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets

    Get PDF
    Numerical simulations of weakly magnetized and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new GRMHD numerical code RAISHIN used in its RMHD configuration. In the numerical simulations the Lorentz factor γ=2.5\gamma = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations sound speeds are c/3\lesssim c/\sqrt 3 in the weakly magnetized simulations and 0.3c\lesssim 0.3c in the strongly magnetized simulations. The Alfven wave speed is 0.07c\lesssim 0.07c in the weakly magnetized simulations and 0.56c\lesssim 0.56c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized relativistic magnetohydrodynamic (RMHD) equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfven wave speeds near light speed and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.Comment: 31 pages, 8 figures, accepted for publicatin in ApJ. A paper with high resolution figures available at http://gammaray.nsstc.nasa.gov/~mizuno/research_new.htm

    Circular dichroism at equal energy sharing in photo-double-ionization of He

    Get PDF
    Interference between dipole and quadrupole transition amplitudes in photo-double-ionization of He by an elliptically polarized vuv photon is shown to induce circular dichroism in the case of equal energy sharing. The magnitude of this retardation-induced dichroic effect is estimated and its impact on the nondipole asymmetries of the triply differential cross section is demonstrated

    Does Pulsar B1757--24 Have a Fallback Disk?

    Full text link
    Radio pulsars are thought to spin-down primarily due to torque from magnetic dipole radiation (MDR) emitted by the time-varying stellar magnetic field as the star rotates. This assumption yields a `characteristic age' for a pulsar which has generally been assumed to be comparable to the actual age. Recent observational limits on the proper motion of pulsar B1757-24, however, revealed that the actual age (>39 kyr) of this pulsar is much greater than its MDR characteristic age (16 kyr) - calling into question the assumption of pure MDR spin-down for this and other pulsars. To explore the possible cause of this discrepancy, we consider a scenario in which the pulsar acquired an accretion disk from supernova ejecta, and the subsequent spin-down occurred under the combined action of MDR and accretion torques. A simplified model of the accretion torque involving a constant mass inflow rate at the pulsar magnetosphere can explain the age and period derivative of the pulsar for reasonable values of the pulsar magnetic field and inflow rate. We discuss testable predictions of this model.Comment: Accepted by ApJ Letters. 15 pages with 1 figur

    The Duck Redux: An Improved Proper Motion Upper Limit for the Pulsar B1757-24 Near the Supernova Remnant G5.4-1.2

    Full text link
    "The Duck" is a complicated non-thermal radio system, consisting of the energetic radio pulsar B1757-24, its surrounding pulsar wind nebula G5.27-0.90 and the adjacent supernova remnant (SNR) G5.4-1.2. PSR B1757-24 was originally claimed to be a young (~15 000 yr) and extreme velocity (>~1500 km/s) pulsar which had penetrated and emerged from the shell of the associated SNR G5.4-1.2, but recent upper limits on the pulsar's motion have raised serious difficulties with this interpretation. We here present 8.5 GHz interferometric observations of the nebula G5.27-0.90 over a 12-year baseline, doubling the time-span of previous measurements. These data correspondingly allow us to halve the previous upper limit on the nebula's westward motion to 14 milliarcseconds/yr (5-sigma), allowing a substantive reevaluation of this puzzling object. We rule out the possibility that the pulsar and SNR were formed from a common supernova explosion ~15 000 yrs ago as implied by the pulsar's characteristic age, but conclude that an old (>~70 000 yr) pulsar / SNR association, or a situation in which the pulsar and SNR are physically unrelated, are both still viable explanations.Comment: 9 pages, including 1 color and 1 B/W figure. Minor changes following referee's report. ApJ, in pres

    The effect of hypoxia on photocytotoxicity of tics tricaebocyanine dye in vitro

    Get PDF
    To evaluate the effect of cell oxygenation on photocytotoxicity of a novel tricarbocyanine indolenine dye covalently bound to glucose (TICS). Methods: HeLa cells were incubated with 5 µM TICS, 2 h later irradiated by laser at 740 nm with a light dose of 10 J/cm2, delivered at a power density of 10, 20, 25 or 30 mW/cm2, in air or in argon atmosphere, and then scored for viability. Results: The photocytotoxicity of TICS increased dramatically as the power density was reduced. Under hypoxia TICS-photosensitized cell death was determined but its value was lowered, compared to photoirradiation in the air. Conclusion: Photosensitizing effect of TICS is only partially dependent on the oxygenation of tumor cells
    corecore