6 research outputs found

    Final Report Resonance Ionization Mass Spectrometry for Post-Detonation Nuclear Forensics

    Get PDF
    Isotope ratio measurements of the actinide elements provide essential information for nuclear detonation forensics and proliferation detection. Resonance Ionization Mass Spectrometry (RIMS) is a high-sensitivity, elementally selective, laser-based form of mass spectrometry that offers the potential to determine the isotopic composition of materials without sample preparation. Due to the elementally selective approach of RIMS, basic research questions of atomic spectroscopy and the probability for producing neutral atoms in the gas phase, must be studied element by element. The studies carried out in this work represent basic research into the application and optimization of RIMS to the analysis of post-detonation debris

    Multi-element isotopic analysis of hot particles from Chornobyl

    Get PDF
    Microscopic fuel fragments, so-called “hot particles”, were released during the 1986 accident at the Chornobyl nuclear powerplant and continue to contaminate the exclusion zone in northern Ukraine. Isotopic analysis can provide vital information about sample origin, history and contamination of the environment, though it has been underutilized due to the destructive nature of most mass spectrometric techniques, and inability to remove isobaric interference. Recent developments have diversified the range of elements that can be investigated through resonance ionization mass spectrometry (RIMS), notably in the fission products. The purpose of this study is to demonstrate the application of multi-element analysis on hot particles as relates to their burnup, particle formation in the accident, and weathering. The particles were analysed with two RIMS instruments: resonant-laser secondary neutral mass spectrometry (rL-SNMS) at the Institute for Radiation Protection and Radioecology (IRS) in Hannover, Germany, and laser ionization of neutrals (LION) at Lawrence Livermore National Laboratory (LLNL) in Livermore, USA. Comparable results across instruments show a range of burnup dependent isotope ratios for U and Pu and Cs, characteristic of RBMK-type reactors. Results for Rb, Ba and Sr show the influence of the environment, retention of Cs in the particles and time passed since fuel discharge

    Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    No full text
    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios

    Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    No full text
    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios

    Simultaneous isotopic analysis of fission product Sr, Mo, and Ru in spent nuclear fuel particles by resonance ionization mass spectrometry

    No full text
    Abstract Fission product Sr, Mo, and Ru isotopes in six 10-μm particles of spent fuel from a pressurized water reactor were analyzed by resonance ionization mass spectrometry (RIMS) and evaluated for utility in nuclear material characterization. Previous measurements on these same samples showed widely varying U, Pu, and Am isotopic compositions owing to the samples’ differing irradiation environments within the reactor. This is also seen in Mo and Ru isotopes, which have the added complication of exsolution from the UO2 fuel matrix. This variability is a hindrance to interpreting data from a collection of particles with incomplete provenance since it is not always possible to assign particles to the same batch of fuel based on isotopic analyses alone. In contrast, the measured 90Sr/88Sr ratios were indistinguishable across all samples. Strontium isotopic analysis can therefore be used to connect samples with otherwise disparate isotopic compositions, allowing them to be grouped appropriately for interpretation. Strontium isotopic analysis also provides a robust chronometer for determining the time since fuel irradiation. Because of the very high sensitivity of RIMS, only a small fraction of material in each of the 10 μm samples was consumed, leaving the vast majority still available for other analyses

    Effects of Plume Hydrodynamics and Oxidation on the Composition of a Condensing Laser-Induced Plasma

    No full text
    High-temperature chemistry in laser ablation plumes leads to vapor-phase speciation, which can induce chemical fractionation during condensation. Using emission spectroscopy acquired after ablation of a SrZrO<sub>3</sub> target, we have experimentally observed the formation of multiple molecular species (ZrO and SrO) as a function of time as the laser ablation plume evolves. Although the stable oxides SrO and ZrO<sub>2</sub> are both refractory, we observed emission from the ZrO intermediate at earlier times than SrO. We deduced the time-scale of oxygen entrainment into the laser ablation plume using an <sup>18</sup>O<sub>2</sub> environment by observing the in-growth of Zr<sup>18</sup>O in the emission spectra relative to Zr<sup>16</sup>O, which was formed by reaction of Zr with <sup>16</sup>O from the target itself. Using temporally resolved plume-imaging, we determined that ZrO formed more readily at early times, volumetrically in the plume, while SrO formed later in time, around the periphery. Using a simple temperature-dependent reaction model, we have illustrated that the formation sequence of these oxides subsequent to ablation is predictable to first order
    corecore