5 research outputs found

    Evaluation of multiple micronutrient supplementation and medium-quantity lipid-based nutrient supplementation in pregnancy on child development in rural Niger: A secondary analysis of a cluster randomized controlled trial.

    No full text
    BackgroundIt is estimated that over 250 million children under 5 years of age in low- and middle-income countries (LMICs) do not reach their full developmental potential. Poor maternal diet, anemia, and micronutrient deficiencies during pregnancy are associated with suboptimal neurodevelopmental outcomes in children. However, the effect of prenatal macronutrient and micronutrient supplementation on child development in LMIC settings remains unclear due to limited evidence from randomized trials.Methods and findingsWe conducted a 3-arm cluster-randomized trial (n = 53 clusters) that evaluated the efficacy of (1) prenatal multiple micronutrient supplementation (MMS; n = 18 clusters) and (2) lipid-based nutrient supplementation (LNS; n = 18 clusters) as compared to (3) routine iron-folic acid (IFA) supplementation (n = 17 clusters) among pregnant women in the rural district of Madarounfa, Niger, from March 2015 to August 2019 (ClinicalTrials.gov identifier NCT02145000). Children were followed until 2 years of age, and the Bayley Scales of Infant and Toddler Development III (BSID-III) were administered to children every 3 months from 6 to 24 months of age. Maternal report of WHO gross motor milestone achievement was assessed monthly from 3 to 24 months of age. An intention-to-treat analysis was followed. Child BSID-III data were available for 559, 492, and 581 singleton children in the MMS, LNS, and IFA groups, respectively. Child WHO motor milestone data were available for 691, 781, and 753 singleton children in the MMS, LNS, and IFA groups, respectively. Prenatal MMS had no effect on child BSID-III cognitive (standardized mean difference [SMD]: 0.21; 95% CI: -0.20, 0.62; p = 0.32), language (SMD: 0.16; 95% CI: -0.30, 0.61; p = 0.50) or motor scores (SMD: 0.18; 95% CI: -0.39, 0.74; p = 0.54) or on time to achievement of the WHO gross motor milestones as compared to IFA. Prenatal LNS had no effect on child BSID-III cognitive (SMD: 0.17; 95% CI: -0.15, 0.49; p = 0.29), language (SMD: 0.11; 95% CI: -0.22, 0.44; p = 0.53) or motor scores (SMD: -0.04; 95% CI: -0.46, 0.37; p = 0.85) at the 24-month endline visit as compared to IFA. However, the trajectory of BSID-III cognitive scores during the first 2 years of life differed between the groups with children in the LNS group having higher cognitive scores at 18 and 21 months (approximately 0.35 SD) as compared to the IFA group (p-value for difference in trajectory ConclusionsThere was no benefit of prenatal MMS on child development outcomes up to 2 years of age as compared to IFA. There was evidence of an apparent positive effect of prenatal LNS on cognitive development trajectory and time to achievement of selected gross motor milestones.Trial registrationClinicalTrials.gov NCT02145000

    Towards Risk-Sensitive and Transformative Urban Development in Sub Saharan Africa

    Get PDF
    Risk-sensitive urban development is required to reduce accumulated risk and to better consider risk when planning new developments. To deliver a sustainable city for all requires a more frank and comprehensive focus on procedure: On who makes decisions, under which frameworks, based upon what kind of data or knowledge, and with what degree and direction of accountability? Acting on these procedural questions is the promise of transformative urban development. This paper explores the status of risk sensitive and transformative urban development and the scope for transition towards these components of sustainability in urban sub-Saharan Africa through the lens of diverse city cases: Karonga (Malawi), Ibadan (Nigeria), Niamey (Niger) and Nairobi (Kenya). The paper draws from a 3-year research and capacity building programme called Urban Africa: Risk Knowledge that aims to address gaps in data, understandings and capacity to break cycles of risk accumulation. A common analytical framework is presented to help identify blockages and opportunities for transition towards a risk-sensitive and transformative urban development. This framework is then illustrated through each city in turn and a concluding discussion reflects on city observations to draw out recommendations for city level and wider action and research partnerships

    Spatio-Temporal Variability of Malaria Incidence in the Health District of Kati, Mali, 2015–2019

    No full text
    Introduction: Despite the implementation of control strategies at the national scale, the malaria burden remains high in Mali, with more than 2.8 million cases reported in 2019. In this context, a new approach is needed, which accounts for the spatio-temporal variability of malaria transmission at the local scale. This study aimed to describe the spatio-temporal variability of malaria incidence and the associated meteorological and environmental factors in the health district of Kati, Mali. Methods: Daily malaria cases were collected from the consultation records of the 35 health areas of Kati’s health district, for the period 2015–2019. Data on rainfall, relative humidity, temperature, wind speed, the normalized difference vegetation index, air pressure, and land use–land cover were extracted from open-access remote sensing sources, while data on the Niger River’s height and flow were obtained from the National Department of Hydraulics. To reduce the dimension and account for collinearity, strongly correlated meteorological and environmental variables were combined into synthetic indicators (SI), using a principal component analysis. A generalized additive model was built to determine the lag and the relationship between the main SIs and malaria incidence. The transmission periods were determined using a change-point analysis. High-risk clusters (hotspots) were detected using the SatScan method and were ranked according to risk level, using a classification and regression tree analysis. Results: The peak of the malaria incidence generally occurred in October. Peak incidence decreased from 60 cases per 1000 person–weeks in 2015, to 27 cases per 1000 person–weeks in 2019. The relationship between the first SI (river flow and height, relative humidity, and rainfall) and malaria incidence was positive and almost linear. A non-linear relationship was found between the second SI (air pressure and temperature) and malaria incidence. Two transmission periods were determined per year: a low transmission period from January to July—corresponding to a persisting transmission during the dry season—and a high transmission period from July to December. The spatial distribution of malaria hotspots varied according to the transmission period. Discussion: Our study confirmed the important variability of malaria incidence and found malaria transmission to be associated with several meteorological and environmental factors in the Kati district. The persistence of malaria during the dry season and the spatio-temporal variability of malaria hotspots reinforce the need for innovative and targeted strategies
    corecore