8 research outputs found

    Multicenter prevalence of anaphylaxis in clinic-based oral food challenges

    Get PDF
    Background Although previous single-center studies report the rate of anaphylaxis for oral food challenges (OFCs) as 9% to 11%, little is known regarding the epidemiology of clinical OFCs across multiple centers in the United States. Objective To examine the epidemiology, symptoms, and treatment of clinical low-risk OFCs in the nonresearch setting. Methods Data were obtained from 2008 to 2013 through a physician survey in 5 food allergy centers geographically distributed across the United States. Allergic reaction rates and the association of reaction rates with year, hospital, and demographics were determined using a linear mixed model. Meta-analysis was used to pool the proportion of reactions and anaphylaxis with inverse-variance weights using a random-effects model with exact confidence intervals (CIs). Results A total of 6,377 OFCs were performed, and the pooled estimate of anaphylaxis was 2% (95% CI, 1%-3%). The rate of allergic reactions was 14% (95% CI, 13%-16%) and was consistent during the study period (P = .40). Reaction rates ranged from 13% to 33%. Males reacted 16% more frequently than females (95% CI, 4%-37.5%; P = .04). Foods challenged in 2013 varied geographically, with peanut as the most challenged food in the Northeast, Midwest, and West and egg as the most challenged in the South. Conclusion As the largest national survey of allergic reactions of clinical open OFCs in a nonresearch setting in the United States, this study found that performing clinical nonresearch open low-risk OFCs results in few allergic reactions, with 86% of challenges resulting in no reactions and 98% without anaphylaxis

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore