25 research outputs found

    Challenges and Perspectives of the Risk Assessment of the Genetic Susceptibility to Cancer in the Next-Generation Sequencing Era

    Get PDF
    The risk assessment of the genetic susceptibility to cancer is the process of addressing and communicating the genetic risks to individuals and families with cancer. The recent breakthroughs of the next-generation sequencing era are adding new challenges to the precision clinical care

    Modern Medical Genetics and Genomics in the Era of Personalized/Precision Medicine

    Get PDF

    Molecular Pathogenesis of Renal Cell Carcinoma: A Review

    Get PDF

    Single Nucleotide Polymorphisms and Colorectal Cancer Risk: The First Replication Study in a South American Population

    Get PDF
    Colorectal cancer (CRC) heritability is determined by the complex interaction between inherited variants and environmental factors. CRC incidence rates have been increasing specially in developing countries, such as Brazil, where CRC is the third most frequent cancer in both genders. Genome‐wide association studies (GWAS), based on thousands of cases and controls typed at thousands of single nucleotide polymorphisms (SNPs), have identified several variants that associate with gastrointestinal cancer risk. Less of half of the familial risk has been elucidated through GWAS that identified common SNPs in almost exclusively European populations. Replication studies in admixed heterogeneous populations are scarce and most failed to replicate all the imputed SNPs. Population stratification by ethnic subgroups with different allele frequencies and so with different patterns of linkage disequilibrium may cause expurious associations. Here, we show the first replication study of CRC inherited susceptibility in South America and aimed to identify known SNPs, which are associated with CRC risk in European populations

    Hypopigmented macules associated to seizures must raise avareness for the possibility of the diagnosis of tuberous sclerosis

    Get PDF
    A esclerose tuberosa (ET) é uma doença multissistêmica de herança autossômica dominante caracterizada pelo desenvolvimento de hamartomas em diversos órgãos, com incidência estimada em 1:10.000 a 1:6.000 nascidos vivos. Sua ocorrência relaciona-se a mutações com perda de função nos genes TSC1 e TSC2, cujos produtos proteicos (respectivamente hamartina e tuberina) formam um heterodímero com importante função na supressão tumoral e no controle do ciclo celular [...

    A clinical follow-up of 35 Brazilian patients with Prader-Willi Syndrome

    Get PDF
    OBJECTIVE: Prader-Willi Syndrome is a common etiology of syndromic obesity that is typically caused by either a paternal microdeletion of a region in chromosome 15 (microdeletions) or a maternal uniparental disomy of this chromosome. The purpose of this study was to describe the most significant clinical features of 35 Brazilian patients with molecularly confirmed Prader-Willi syndrome and to determine the effects of growth hormone treatment on clinical outcomes. METHODS: A retrospective study was performed based on the medical records of a cohort of 35 patients diagnosed with Prader-Willi syndrome. The main clinical characteristics were compared between the group of patients presenting with microdeletions and the group presenting with maternal uniparental disomy of chromosome 15. Curves for height/length, weight and body mass index were constructed and compared between Prader-Willi syndrome patients treated with and without growth hormone to determine how growth hormone treatment affected body composition. The curves for these patient groups were also compared with curves for the normal population. RESULTS: No significant differences were identified between patients with microdeletions and patients with maternal uniparental disomy for any of the clinical parameters measured. Growth hormone treatment considerably improved the control of weight gain and body mass index for female patients but had no effect on either parameter in male patients. Growth hormone treatment did not affect height/length in either gender. CONCLUSION: The prevalence rates of several clinical features in this study are in agreement with the rates reported in the literature. Additionally, we found modest benefits of growth hormone treatment but failed to demonstrate differences between patients with microdeletions and those with maternal uniparental disomy. The control of weight gain in patients with Prader-Willi syndrome is complex and does not depend exclusively on growth hormone treatment

    Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome.</p> <p>Methods</p> <p>Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed.</p> <p>Results</p> <p>Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson).</p> <p>Conclusions</p> <p>The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.</p

    Identification and characterization of germline mutations in the VHL gene in families with von Hippel-Lindau disease

    No full text
    A doença de von Hippel-Lindau (VHL) é uma síndrome de câncer familial herdada de forma autossômica dominante que predispõe ao desenvolvimento de diversos tipos de neoplasias benignas e malignas. É causada por mutações germinativas e somáticas no gene VHL e tem uma incidência aproximada de um a cada 36.000 nascimentos. O gene VHL é um supressor tumoral e codifica a proteína VHL, a qual possui, entre outras funções, uma atividade ubiquitina-ligase, responsável pela poliubiquitinização e degradação proteassômica da subunidade alfa do fator induzido por hipóxia (HIF) na presença de oxigênio. As principais características da doença de VHL são: hemangioblastomas de sistema nervoso central (SNC), principalmente do cerebelo e medula espinhal; angiomas de retina e carcinoma renal de células claras. A probabilidade de desenvolver cada um desses tumores ao longo da vida é estimada em maior que 70%, podendo manifestar-se desde a infância até a fase adulta, principalmente entre a 2ª e 3ª décadas de vida. Classifica-se a doença de VHL conforme a ausência (tipo 1) ou presença de feocromocitoma (tipo 2). A doença do tipo 2 é causada, essencialmente, por mutações missense no gene VHL. As mutações podem ser grandes deleções (20%) ou pontuais (80%) do tipo missense, frameshift, nonsense ou em regiões de splicing. O teste genético é considerado padrão para o manejo clínico dos pacientes e dos familiares em risco, pois permite o diagnóstico e o tratamento precoce das neoplasias, melhorando assim a expectativa de vida. Técnicas de biologia molecular, como o seqüenciamento direto do DNA e o Southern blotting quantitativo, permitem a detecção de mutações germinativas em até 100% dos casos. Técnicas mais recentes, como o PCR quantitativo em tempo real e o MLPA, têm sido empregadas para uma detecção mais eficaz de grandes deleções no gene VHL. Os objetivos do presente estudo foram: (1) diagnosticar os pacientes com suspeita da doença de VHL; (2) identificar e caracterizar mutações germinativas pontuais no gene VHL nos pacientes e em seus parentes de 1º grau; (3) fornecer o aconselhamento genético pré e pós-teste. Dos 37 indivíduos com suspeita da doença de VHL, 14 pacientes de sete famílias diferentes preencheram os critérios diagnósticos. Um paciente apresentou hemangioblastoma cerebelar isolado e sete parentes de 1º grau estavam assintomáticos. Foram realizadas as técnicas de PCR, RFLP e seqüenciamento direto do DNA genômico e após clonagem. Foram identificadas quatro mutações pontuais na região codificadora do gene VHL em quatro famílias diferentes, sendo que duas delas haviam sido descritas na literatura [c.226_228delTTC (F76del), c.217C>T (Q73X)]. As outras duas mutações são descritas pela primeira vez neste estudo e afetam o sitio de splicing (IVS1-1 G>A, IVS2-1 G>C). É provável que as demais três famílias sejam portadoras de deleções germinativas no gene VHL. Em resumo, os resultados apresentados neste estudo ampliam o conhecimento da base molecular da doença de VHL e consiste na primeira pesquisa de pós-graduação produzida pelo ambulatório de aconselhamento genético do câncer do HCFMRP-USP.Von Hippel-Lindau disease (VHL) is an autosomal dominant hereditary cancer syndrome that predisposes to the development of a variety of benign and malignant tumors. VHL is caused by germline and somatic mutations in the VHL gene and it has an incidence of approximately one in 36,000 livebirths. The VHL gene is a tumor suppressor that is translated into the VHL protein, which has many functions, mainly an ubiquitin-ligase activity, responsible for the polyubiquitylation and proteasomal degradation of the alpha subunit of the hipoxia-inducible factor (HIF) in the presence of oxygen. The main clinical features of VHL are: CNS hemangioblastomas, especially of the cerebellum and spinal cord; retinal angiomas and clear-cell renal carcinomas. The lifetime probability of developing one of these tumors is estimated at more than 70%, whichever may present since childhood until adulthood, more often during the 2nd and 3rd decades. VHL is classified into type 1 (without pheochromocytoma) and type 2 (with pheochromocytoma), the latter being mainly caused by missense mutations. VHL germline mutations may be rearrangements and large deletions (~20%) or point mutations (~80%), such as missense, frameshift, nonsense or in the splicing sites. VHL gene testing is considered standard for the clinical manegement of patients and relatives at risk, whereby it provides early diagnosis and treatment of tumors, improving their life expectancies. Molecular biology techniques such as sequencing and quantitative Southern blotting may detect virtually 100% of VHL germline mutations. More recent methods, such as quantitative real-time PCR and MLPA, have been shown to detect VHL gene gross deletions efficiently. The objectives of this study were: (1) to diagnose patients with VHL clinically; (2) to detect germline point mutations in the VHL gene in the patients and their close relatives at risk; (3) to provide pre and post-testing genetic counseling. Fourteen out of 37 patients from seven unrelated families fulfilled the VHL clinical diagnostic criteria, one patient presented a single cerebellar hemangioblastoma and seven at-risk relatives were still asymptomatic. The methods included: PCR, RFLP, genomic DNA direct sequencing and after cloning. Four germline point mutations in the coding region of the VHL gene were identified, two of whom had been described in literature [c.226_228delTTC (p.F76del), c.217C>T (p.Q73X)]. The other two mutations had not been described so far and affect the splicing sites (IVS1-1 G>A, IVS2-1 G>C). The other three families may carry gross germline deletions in the VHL gene. In conclusion, the outcome presented in this study provides with a greater knowledge of molecular basis of VHL disease and relies on the first post-graduation research carried out at the HCFMRP-USP cancer genetic counseling service

    Melhor é prevenir

    No full text
    corecore