28 research outputs found

    Enhanced Stability of Vegetal Diamine Oxidase with Trehalose and Sucrose as Cryoprotectants: Mechanistic Insights

    No full text
    Enteric dysfunctions are common for various histamine-related intestinal disorders. Vegetal diamine oxidase (vDAO), an enzyme able to decompose histamine and thus alleviate histamine-related dysfunctions, was formulated in gastro-resistant tablet forms for oral administration as a food supplement and possible therapeutic agent. A major challenge for the use of proteins in the pharmaceutical field is their poor stability. In this study, vDAO was freeze-dried in the absence or in the presence of sucrose or trehalose as cryoprotectants and then formulated as tablets by direct compression. The stability of the obtained preparations was followed during storage at 4 °C and −20 °C for 18 months. In vitro dissolution tests with the vDAO powders formulated as tablets were performed in simulated gastric and in simulated intestinal fluids. The tablets obtained with the powder of the vDAO lyophilized with sucrose or trehalose cryoprotectants offered better protection for enzyme activity. Furthermore, the release of the vDAO lyophilized with the cryoprotectants was around 80% of the total loaded activity (enzyme units) compared to 20% for the control (vDAO powder prepared without cryoprotectants). This report revealed the potential of sucrose and trehalose as cryoprotectants to protect vDAO from freeze-drying stress and during storage, and also to markedly improve the vDAO release performance of tablets obtained with vDAO powders

    Enhanced Stability of Vegetal Diamine Oxidase with Trehalose and Sucrose as Cryoprotectants: Mechanistic Insights

    No full text
    Enteric dysfunctions are common for various histamine-related intestinal disorders. Vegetal diamine oxidase (vDAO), an enzyme able to decompose histamine and thus alleviate histamine-related dysfunctions, was formulated in gastro-resistant tablet forms for oral administration as a food supplement and possible therapeutic agent. A major challenge for the use of proteins in the pharmaceutical field is their poor stability. In this study, vDAO was freeze-dried in the absence or in the presence of sucrose or trehalose as cryoprotectants and then formulated as tablets by direct compression. The stability of the obtained preparations was followed during storage at 4 °C and −20 °C for 18 months. In vitro dissolution tests with the vDAO powders formulated as tablets were performed in simulated gastric and in simulated intestinal fluids. The tablets obtained with the powder of the vDAO lyophilized with sucrose or trehalose cryoprotectants offered better protection for enzyme activity. Furthermore, the release of the vDAO lyophilized with the cryoprotectants was around 80% of the total loaded activity (enzyme units) compared to 20% for the control (vDAO powder prepared without cryoprotectants). This report revealed the potential of sucrose and trehalose as cryoprotectants to protect vDAO from freeze-drying stress and during storage, and also to markedly improve the vDAO release performance of tablets obtained with vDAO powders

    N-acylated chitosan: Hydrophobic matrices for controlled drug release.

    No full text
    Abstract N-acylation of chitosan with various fatty acid (C 6 -C 16 ) chlorides increased its hydrophobic character and made important changes in its structural features. Unmodified chitosan exhibited a low degree of order (DO) and a weak tablet crushing strength. Chitosan acylated with a short chain length (C 6 ) possessed similar properties, but exhibited significant swelling. Acylation with longer side chains (C 8 -C 16 ) resulted in a higher DO and crushing strength but lower swelling. The best mechanical characteristics and drug release properties were found for palmitoyl chitosan (substitution degree 40 -50%) tablets with 20% acetaminophen as a tracer. The high stability of these monolithic tablets appears to be due to hydrophobic interactions between side chains, as shown by a more organized structure. Infrared spectroscopy, X-ray diffractometry and proton nuclear magnetic resonance analyses of palmitoyl chitosan were consistent with a hydrophobic self-assembling model. Drug dissolution kinetics showed longer release times for higher degrees of functionalization, i.e. 30 h (for 47% substitution) and 90 h (for 69% substitution), suggesting palmitoyl chitosan excipients as interesting candidates for oral and subdermal pharmaceutical applications.

    Ampholytic and Polyelectrolytic Starch as Matrices for Controlled Drug Delivery

    No full text
    The potential of the polyampholytic and polyelectrolytic starch compounds as excipients for drug controlled release was investigated using various tracers differing in terms of solubility and permeability. Ampholytic trimethylaminecarboxymethylstarch (TMACMS) simultaneously carrying trimethylaminehydroxypropyl (TMA) cationic groups and carboxymethyl (CM) anionic groups was obtained in one-step synthesis in aqueous media. Trimethylaminestarch (TMAS) and carboxymethylstarch (CMS) powders were also synthesized separately and then homogenized at equal proportions in liquid phase for co-processing by spray drying (SD) to obtain polyelectrolytic complexes TMAS-CMS (SD). Similarly, equal amounts of TMAS and CMS powders were dry mixed (DM) to obtain TMAS:CMS (DM). Monolithic tablets were obtained by direct compression of excipient/API mixes with 60% or 80% drug loads. The in vitro dissolution tests showed that ampholytic (TMACMS) and co-processed TMAS-CMS (SD) with selected tracers (one from each class of Biopharmaceutical Classification System (BCS)), were able to control the release even at very high loading (80%). The presence of opposite charges located at adequate distances may impact the polymeric chain organisation, their self-assembling, and implicitly the control of drug release. In conclusion, irrespective of preparation procedure, ampholytic and polyelectrolytic starch materials exhibited similar behaviours. Electrostatic interactions generated polymeric matrices conferring good mechanical features of tablets even at high drug loading

    Carboxymethyl starch: Chitosan monolithic matrices containing diamine oxidase and catalase for intestinal delivery

    Get PDF
    Abstract The capacity of carboxymethyl starch (CMS):Chitosan monolithic tablets to protect diamine oxidase and/or catalase therapeutic enzymes against simulated gastric fluid (SGF) and to control their delivery in simulated intestinal fluid (SIF) was investigated. Enzyme formulations loaded with grass pea seedlings diamine oxidase (PSDAO) vegetal extract, catalase, or PSDAO associated to catalase, were obtained by direct compression. The CMS:Chitosan (1:1) matrix afforded a good gastric protection to PSDAO and to catalase, when each enzyme was formulated separately. Variable amounts of DAO were delivered in the SIF containing pancreatin, with maximal release reached at about 8 h, a time convenient for tablets to attain the colon. Up to 50% of the initial enzymatic activity of catalase formulated with CMS:Chitosan was found after 8 h in SIF. For the CMS:Chitosan tablets of bi-enzymatic formulations containing PSDAO:Catalase, the releases of DAO and of catalase were synchronized. The hydrogen peroxide (product of DAO activity) was decomposed by the catalase liberated in the same SIF environment. The proposed formulations could allow novel therapeutic approaches for the treatment of inflammatory bowel diseases, intestinal cancers or pseudo-allergic reactions

    Stability of vegetal diamine oxidase in simulated intestinal media: protective role of cholic acids

    No full text
    Food biogenic amines, in particular, histamine, are often responsible for various enteric and vascular dysfunctions. Several years ago, the oral administration of copper-containing diamine oxidase (DAO), also called histaminase, able to oxidatively deaminate biogenic amines, had been suggested as a food supplement to control food allergy and enteric dysfunctions. This report is aimed to generate a global image on the behavior of orally administrated DAO dosage forms in the intestinal tract. The catalytic stability of DAO from Lathyrus sativus seedlings in various simulated intestinal media with different pH and containing different association of cholic acids, pancreatic proteases, bicarbonate, lipids, or alcohol was investigated. Cholic acids and lipids protected the enzyme in the simulated intestinal fluids. However, they were not able to protect against the inhibitory effect of 24-36% (v/v) ethanol. These observations may be relevant for oral administration of enzymes as food supplements or therapeutic bioactive agents
    corecore