1,627 research outputs found

    Centaurus A as the Source of ultra-high energy cosmic rays?

    Get PDF
    We present numerical simulations for energy spectra and angular distributions of nucleons above 10^{19} eV injected by the radio-galaxy Centaurus A at a distance 3.4 Mpc and propagating in extra-galactic magnetic fields in the sub-micro Gauss range. We show that field strengths B~0.3 micro Gauss, as proposed by Farrar and Piran, cannot provide sufficient angular deflection to explain the observational data. A magnetic field of intensity ~1 micro Gauss could reproduce the observed large-scale isotropy and could marginally explain the observed energy spectrum. However, it would not readily account for the E=320 plusminus 93 EeV Fly's Eye event that was detected at an angle 136 degrees away from Cen-A. Such a strong magnetic field also saturates observational upper limits from Faraday rotation observations and X-ray bremsstrahlung emission from the ambient gas (assuming equipartition of energy). This scenario may already be tested by improving magnetic field limits with existing instruments. We also show that high energy cosmic ray experiments now under construction will be able to detect the level of anisotropy predicted by this scenario. We conclude that for magnetic fields B~0.1-0.5 micro Gauss, considered as more reasonable for the local Supercluster environment, in all likelihood at least a few sources within ~10 Mpc from the Earth should contribute to the observed ultra high energy cosmic ray flux.Comment: 7 latex pages, 7 postscript figures included; for related numerical simulations see also http://www.iap.fr/users/sigl/r2e.htm

    Statistics of energy levels and zero temperature dynamics for deterministic spin models with glassy behaviour

    Full text link
    We consider the zero-temperature dynamics for the infinite-range, non translation invariant one-dimensional spin model introduced by Marinari, Parisi and Ritort to generate glassy behaviour out of a deterministic interaction. It is shown that there can be a large number of metatastable (i.e., one-flip stable) states with very small overlap with the ground state but very close in energy to it, and that their total number increases exponentially with the size of the system.Comment: 25 pages, 8 figure

    Prostate-specific antigen: An unfamiliar protein in the human salivary glands

    Get PDF
    Objectives: The presence of prostate-specific antigen (PSA) in saliva and salivary glands has been reported. Nevertheless, its release pathway in these glands remains to be elucidated. Here, we showed PSA subcellular distribution focusing on its plausible route in human salivary parenchyma. Materials and Methods: Sections of parotid and submandibular glands were subjected to the immunohistochemical demonstration of PSA by the streptavidin–biotin method revealed by alkaline phosphatase. Moreover, ultrathin sections were collected on nickel grids and processed for immunocytochemical analysis, to visualize the intracellular distribution pattern of PSA through the observation by transmission electron microscopy. Results: By immunohistochemistry, in both parotid and submandibular glands PSA expression was detected in serous secretory acini and striated ducts. By immunocytochemistry, immunoreactivity was retrieved in the cytoplasmic compartment of acinar and ductal cells, often associated with small cytoplasmic vesicles. PSA labeling appeared also on rough endoplasmic reticulum and in the acini's lumen. A negligible PSA labeling appeared in most of the secretory granules of both glands. Conclusions: Our findings clearly support that human parotid and submandibular glands are involved in PSA secretion. Moreover, based on the immunoreactivity pattern, its release in oral cavity would probably occur by minor regulated secretory or constitutive-like secretory pathways

    STZ-diabetic rat heart maintains developed tension amplitude by increasing sarcomere length and crossbridge density

    Get PDF
    New Findings: What is the central question of this study? In the papillary muscle from type I diabetic rats, does diabetes-associated altered ventricular function result from changes of acto-myosin interactions and are these modifications attributable to a possible sarcomere rearrangement? What is the main finding and its importance? For the first time, we showed that type-I diabetes altered sarcomeric ultrastructure, as seen by transmission electron microscopy, consistent with physiological parameters. The diabetic condition induced slower timing parameters, which is compatible with a diastolic dysfunction. At the sarcomeric level, augmented ÎČ-myosin heavy chain content and increased sarcomere length and crossbridges' number preserve myocardial stroke and could concur to maintain the ejection fraction. Abstract: We investigated whether diabetes-associated altered ventricular function, in a type I diabetes animal model, results from a modification of acto-myosin interactions, through the in vitro recording of left papillary muscle mechanical parameters and examination of sarcomere morphology by transmission electron microscopy (TEM). Experiments were performed on streptozotocin-induced diabetic and age-matched control female Wistar rats. Mechanical isometric and isotonic indexes and timing parameters were determined. Using Huxley's equations, we calculated mechanics, kinetics and energetics of myosin crossbridges. Sarcomere length and A-band length were measured on TEM images. Type I and III collagen and ÎČ-myosin heavy chain (MHC) expression were determined by immunoblotting. No variation in resting and developed tension or maximum extent of shortening was evident between groups, but diabetic rats showed lower maximum shortening velocity and prolonged timing parameters. Compared to controls, diabetics also displayed a higher number of crossbridges with lower unitary force. Moreover, no change in type I and III collagen was associated to diabetes, but pathological rats showed a two-fold enhancement of ÎČ-MHC content and longer sarcomeres and A-band, detected by ultrastructural morphometry. Overall, these data address whether a preserved systolic function accompanied by an altered diastolic phase results from a recruitment of super-relaxed myosin heads or the phosphorylation of the regulatory light chain site in myosin. Although the early signs of diabetic cardiomyopathy were well expressed, the striking finding of our study was that, in diabetics, sarcomere modification may be a possible compensatory mechanism that preserves systolic function

    Bose Einstein condensation on inhomogeneous amenable graphs

    Full text link
    We investigate the Bose-Einstein Condensation on nonhomogeneous amenable networks for the model describing arrays of Josephson junctions. The resulting topological model, whose Hamiltonian is the pure hopping one given by the opposite of the adjacency operator, has also a mathematical interest in itself. We show that for the nonhomogeneous networks like the comb graphs, particles condensate in momentum and configuration space as well. In this case different properties of the network, of geometric and probabilistic nature, such as the volume growth, the shape of the ground state, and the transience, all play a role in the condensation phenomena. The situation is quite different for homogeneous networks where just one of these parameters, e.g. the volume growth, is enough to determine the appearance of the condensation.Comment: 43 pages, 12 figures, final versio

    The human major sublingual gland and its neuropeptidergic and nitrergic innervations

    Get PDF
    Background: What textbooks usually call the sublingual gland in humans is in reality a tissue mass of two types of salivary glands, the anteriorly located consisting of a cluster of minor sublingual glands and the posteriorly located major sublingual gland with its outlet via Bartholin's duct. Only recently, the adrenergic and cholinergic innervations of the major sublingual gland was reported, while information regarding the neuropeptidergic and nitrergic innervations is still lacking. Methods: Bioptic and autoptic specimens of the human major sublingual gland were examined by means of immunohistochemistry for the presence of vasoactive intestinal peptide (VIP)-, neuropeptide Y (NPY)-, substance P (SP)-, calcitonin gene related-peptide (CGRP)-, and neuronal nitric oxide synthase (nNOS)-labeled neuronal structures. Results: As to the neuropeptidergic innervation of secretory cells (here in the form of mucous tubular and seromucous cells), the findings showed many VIP-containing nerves, few NPY- and SP-containing nerves and a lack of CGRP-labeled nerves. As to the neuropeptidergic innervation of vessels, the number of VIP-containing nerves was modest, while, of the other neuropeptide-containing nerves under study, only few (SP and CGRP) to very few (NPY) nerves were observed. As to the nitrergic innervation, nNOS-containing nerves were very few close to secretory cells and even absent around vessels. Conclusion: The various innervation patterns may suggest potential transmission mechanisms involved in secretory and vascular responses of the major sublingual gland

    Power Corrections in Charmless B Decays

    Full text link
    In this paper, we focus on the role of power corrections in QCD factorization(QCDF) method in charmless two-body nonleptonic BB meson decays. We use the ratio of the branching fraction of B+→π+K∗0B^+ \to \pi^+ K^{\ast 0} to that of B0→π−ρ+B^0 \to \pi^- \rho^+, for which the theoretical uncertainties are greatly reduced, to show clearly that the power corrections in charmless B decays are probably large. With other similar ratios considered, for example, for the B0→K−ρ+B^0 \to K^- \rho^+ decay, it is very likely that, among various sources of power corrections, annihilation topology plays an indispensable role at least for penguin dominated PV\rm PV channels. We also consider some selective ratios of direct CP asymmetries. Among these, we find that, if power corrections other than the chirally enhanced power corrections and annihilation topology were negligible, QCDF would predict the direct CP asymmetry of B→π+π−B \to \pi^+ \pi^- to be about 3 times larger than that of B→π±K∓B \to \pi^\pm K^\mp, with opposite sign. Experimentally any significant deviation from this prediction would suggest either new physics or possibly the importance of long-distance rescattering effects.Comment: references and note added, to appear in Phys. Rev.

    Cluster Approximation for the Farey Fraction Spin Chain

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Utilising ideas from dynamical systems, the free energy of the model is derived by means of an effective cluster energy approximation. This approximation is valid for divergent cluster sizes, and hence appropriate for the discussion of the magnetizing transition. We calculate the phase boundaries and the scaling of the free energy. At h=0h=0 we reproduce the rigorously known asymptotic temperature dependence of the free energy. For h≠0h \ne 0, our results are largely consistent with those found previously using mean field theory and renormalization group arguments.Comment: 17 pages, 3 figure
    • 

    corecore