14 research outputs found

    SARS-CoV-2 viral load analysis at low and high altitude: A case study from Ecuador

    Full text link
    SARS-CoV-2 has spread throughout the world, including remote areas such as those located at high altitudes. There is a debate about the role of hypobaric hypoxia on viral transmission and COVID-19 incidence. A descriptive cross-sectional analysis of SARS-CoV-2 infection and viral load among patients living at low (230 m) and high altitude (3800 m) in Ecuador was completed. Within these two communities, the total number of infected people at the time of the study was 108 cases (40.3%). The COVID-19 incidence proportion at low altitude was 64% while at high altitude was 30.3%. The mean viral load from those patients who tested positive was 3,499,184 copies/mL (SD = 23,931,479 copies/mL). At low altitude (Limoncocha), the average viral load was 140,223.8 copies/mL (SD = 990,840.9 copies/mL), while for the high altitude group (Oyacachi), the mean viral load was 6,394,789 copies/mL (SD = 32,493,469 copies/mL). We found no statistically significant differences when both results were compared (p = 0.056). We found no significant differences across people living at low or high altitude; however, men and younger populations had higher viral load than women older populations, respectivel

    A comparative analysis of SARS-CoV-2 viral load across different altitudes

    Full text link
    SARS-CoV-2 has spread throughout the world, including areas located at high or very high altitudes. There is a debate about the role of high altitude hypoxia on viral transmission, incidence, and COVID-19 related mortality. This is the first comparison of SARS-CoV-2 viral load across elevations ranging from 0 to 4300 m. To describe the SARS-CoV-2 viral load across samples coming from 62 cities located at low, moderate, high, and very high altitudes in Ecuador. An observational analysis of viral loads among nasopharyngeal swap samples coming from a cohort of 4929 patients with a RT-qPCR test positive for SARS-CoV-2. The relationship between high and low altitude only considering our sample of 4929 persons is equal in both cases and not significative (p-value 0.19). In the case of low altitude, adding the sex variable to the analysis, it was possible to find a significative difference between men and women (p-value < 0.05). Considering initially sex and then altitude, it was possible to find a significative difference between high and low altitude for men (p-value 0.05). There is not enough evidence to state that viral load is affected directly by altitude range but adding a new variable as sex in the analysis shows that the presence of new variables influences the relationship of altitude range and viral load. There is no evidence that viral loads (Ct and copies/ml) differ at low or high altitude. Using sex as a co-factor, we found that men have higher viral loads than women at low and moderate altitude locations, while living at high altitude, no differences were found. When Ct values were aggregated by low, moderate, and high viral load, we found no significant differences when sex was excluded from the analysis. We conclude that viral load is not directly affected by altitude, but COVID-19 incidence and mortality are rather affected by socio-demographic and idiosyncratic dynamics

    Testing for SARS-CoV-2 at the core of voluntary collective isolation: Lessons from the indigenous populations living in the Amazon region in Ecuador

    Get PDF
    Voluntary collective isolation has been proposed to be the best response to COVID-19 for indigenous populations. While the potential value of voluntary collective isolation is appealing, the feasibility of this approach needs empirical evidence to support it as the best response to protect indigenous communities from COVID-19. This paper describes our experience during SARS-CoV-2 surveillance among Waorani communities in the Ecuadorian Amazonian region, from June to September 2020. We found that self-isolation strategies failed to contain the spread of SARS-CoV-2 from main urban areas to remote and isolated comunities

    Nasopharyngeal Microbiota Profiles in Rural Venezuelan Children Are Associated With Respiratory and Gastrointestinal Infections

    Get PDF
    BACKGROUND: Recent research suggests that the microbiota affects susceptibility to both respiratory tract infections (RTIs) and gastrointestinal infections (GIIs). In order to optimize global treatment options, it is important to characterize microbiota profiles across different niches and geographic/socioeconomic areas where RTI and GII prevalences are high. METHODS: We performed 16S sequencing of nasopharyngeal swabs from 209 Venezuelan Amerindian children aged 6 weeks-59 months who were participating in a 13-valent pneumococcal conjugate vaccine (PCV13) study. Using random forest models, differential abundance testing, and regression analysis, we determined whether specific bacteria were associated with RTIs or GIIs and variation in PCV13 response. RESULTS: Microbiota compositions differed between children with or without RTIs (P = .018) or GIIs (P = .001). Several species were associated with the absence of infections. Some of these health-associated bacteria are also observed in developed regions, such as Corynebacterium (log2(fold change [FC]) = 3.30 for RTIs and log2(FC) = 1.71 for GIIs), while others are not commonly observed in developed regions, such as Acinetobacter (log2(FC) = 2.82 and log2(FC) = 5.06, respectively). Klebsiella spp. presence was associated with both RTIs (log2(FC) = 5.48) and GIIs (log2(FC) = 7.20). CONCLUSIONS: The nasopharyngeal microbiota of rural Venezuelan children included several bacteria that thrive in tropical humid climates. Interestingly, nasopharyngeal microbiota composition not only differed in children with an RTI but also in those with a GII, which suggests a reciprocal interplay between the 2 environments. Knowledge of region-specific microbiota patterns enables tailoring of preventive and therapeutic approaches

    Massive testing in the Galapagos Islands and low positivity rate to control SARS-CoV-2 spread during the first semester of the COVID-19 pandemic: a story of success for Ecuador and South America

    Get PDF
    Introduction: During the first months of the COVID-19 pandemic in Latin America, countries like Ecuador, Peru and Colombia experienced chaotic scenarios with public health systems collapsing and lack of testing capacity to control the spread of the virus. In main cities like Guayaquil in Ecuador, dramatic situations such as corpses in the streets were internationally broadcasted. Methods: While the COVID-19 pandemic was devastating South America, SARS-CoV-2 transmission was successfully managed in the Galapagos Islands due to the implementation of a massive screening strategy including hospitalized and community-dwelling populations, and travel restrictions facilitated by its geographical location (972 km from the Ecuadorian continental territory). Floreana Island was one of the few locations in the world that remained COVID-19 free during 2020. Results: In this study, we retrospectively analyzed the data related to SARS-CoV-2 massive testing campaigns from April to September 2020 in the Galapagos Islands, and found this territory to have the lowest positivity rate in South America (4.8-6.7%) and the highest testing ratio among Ecuadorian provinces (9.87% of the population, which is 2480 out of 25 124 inhabitants) during the first wave of the COVID-19 pandemic. Conclusion: This story of success was possible because of the interinstitutional collaboration between the regional government of Galapagos Islands (Consejo de Gobierno), the local authorities (Gobiernos Autonomos Descentralizados de Santa Cruz, San Cristobal and Isabela), the regional authorities from Ecuadorian Ministry of Health, the Agencia de Regulaci&amp;oacute;n y Control de la Bioseguridad y Cuarentena para Gal&amp;aacute;pagos and Universidad de Las Am&amp;eacute;ricas

    Use of anabolic-androgenic steroids masking the diagnosis of pleural tuberculosis: a case report

    No full text
    Abstract Introduction Tuberculous pleural effusions are not always easy to diagnose but the presence of a lymphocyte-rich exudate associated with an increased adenosine deaminase level and a positive skin test result are highly sensitive diagnostic signs. Case presentation We report a case of pleural tuberculosis in a 31-year-old white male patient from Caracas, Venezuela who was negative for human immunodeficiency virus and presented 2 weeks after injecting the anabolic-androgenic steroid nandrolone decanoate, in whom all the tests for tuberculosis were initially negative; an eosinophilic pleural effusion with a low adenosine deaminase level, a negative tuberculin skin test and negative for acid-fast bacilli staining and culture of the pleural fluid. After excluding other causes of eosinophilic pleural effusion malignant pleural effusion was suspected. The patient did not return until 4 months later. The second thoracentesis obtained a pleural fluid suggestive for tuberculosis, with a predominance of lymphocytes, an elevated adenosine deaminase level (51 U/l) and a positive tuberculin skin test. Culture of pleural fragments confirmed pleural tuberculosis. Conclusion This case suggests that the use of an anabolic-androgenic steroid masks the definitive diagnosis of pleural tuberculosis by changing the key diagnostic parameters of the pleural fluid, a finding not previously reported. Available evidence of the effects of anabolic steroids on the immune system also suggests that patients using anabolic-androgenic steroids might be susceptible to developing tuberculosis in either reactivating a latent infection or facilitating development of the disease after a recent infection.</p
    corecore