168 research outputs found

    Coronary microvascular ischemia in hypertrophic cardiomyopathy - a pixel-wise quantitative cardiovascular magnetic resonance perfusion study.

    Get PDF
    BACKGROUND: Microvascular dysfunction in HCM has been associated with adverse clinical outcomes. Advances in quantitative cardiovascular magnetic resonance (CMR) perfusion imaging now allow myocardial blood flow to be quantified at the pixel level. We applied these techniques to investigate the spectrum of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and to explore its relationship with fibrosis and wall thickness. METHODS: CMR perfusion imaging was undertaken during adenosine-induced hyperemia and again at rest in 35 patients together with late gadolinium enhancement (LGE) imaging. Myocardial blood flow (MBF) was quantified on a pixel-by-pixel basis from CMR perfusion images using a Fermi-constrained deconvolution algorithm. Regions-of-interest (ROI) in hypoperfused and hyperemic myocardium were identified from the MBF pixel maps. The myocardium was also divided into 16 AHA segments. RESULTS: Resting MBF was significantly higher in the endocardium than in the epicardium (mean ± SD: 1.25 ± 0.35 ml/g/min versus 1.20 ± 0.35 ml/g/min, P < 0.001), a pattern that reversed with stress (2.00 ± 0.76 ml/g/min versus 2.36 ± 0.83 ml/g/min, P < 0.001). ROI analysis revealed 11 (31%) patients with stress MBF lower than resting values (1.05 ± 0.39 ml/g/min versus 1.22 ± 0.36 ml/g/min, P = 0.021). There was a significant negative association between hyperemic MBF and wall thickness (β = −0.047 ml/g/min per mm, 95% CI: −0.057 to −0.038, P < 0.001) and a significantly lower probability of fibrosis in a segment with increasing hyperemic MBF (odds ratio per ml/g/min: 0.086, 95% CI: 0.078 to 0.095, P = 0.003). CONCLUSIONS: Pixel-wise quantitative CMR perfusion imaging identifies a subgroup of patients with HCM that have localised severe microvascular dysfunction which may give rise to myocardial ischemia

    High-pitch versus conventional cardiovascular CT in patients being assessed for transcatheter aortic valve implantation: A real-world appraisal

    Get PDF
    Objective High-pitch protocols are increasingly used in cardiovascular CT assessment for transcatheter aortic valve implantation (TAVI), but the impact on diagnostic image quality is not known. Methods We reviewed 95 consecutive TAVI studies: 44 (46%) high-pitch and 51 (54%) standard-pitch. Single high-pitch scans were performed regardless of heart rate. For standard-pitch acquisitions, a separate CT-aortogram and CT-coronary angiogram were performed with prospective gating, unless heart rate was ≥70 beats/min, when retrospective gating was used. The aortic root and coronary arteries were assessed for artefact (significant artefact=1; artefact not limiting diagnosis=2; no artefact=3). Aortic scans were considered diagnostic if the score was > 1; the coronaries, if all three epicardial arteries scored > 1. Results There was no significant difference in diagnostic image quality for either the aorta (artefact-free high-pitch: 31 (73%) scans vs standard-pitch: 40 (79%), p=0.340) or the coronary tree as a whole (10 (23%) vs 15 (29%), p=0.493). However, proximal coronary arteries were less well visualised using high-pitch acquisitions (16 (36%) vs 30 (59%), p=0.04). The median (IQR) radiation dose was significantly lower in the high-pitch cohort (dose-length product: 347 (318-476) vs 1227 (1150-1474) mGy cm, respectively, p < 0.001), and the protocol required almost half the amount of contrast. Conclusions The high-pitch protocol significantly reduces radiation and contrast doses and is non-inferior to standard-pitch acquisitions for aortic assessment. For aortic root assessment, the high-pitch protocol is recommended. However, if coronary assessment is critical, this should be followed by a conventional standard-pitch, low-dose, prospectively gated CT-coronary angiogram if the high-pitch scan is non-diagnostic

    The hypoactive corpora cavernosa with degenerative erectile dysfunction: a new syndrome

    Get PDF
    BACKGROUND: In a group of 22 patients with erectile dysfunction, vasculogenic, neurogenic, endocrinologic or psychogenic investigations failed to find a cause for their erectile dysfunction. The electro-cavernosograms of these patients recorded a diminished activity. We investigated the hypothesis that diminished corpus cavernosum electromyography activity was the cause of erectile dysfunction in these patients. METHODS: The study comprised the above mentioned 22 patients (study group, 43.8 ± 5.9 SD years) and 15 healthy volunteers (control group, 41.8 ± 5.1 SD years). The electro-cavernosograms were recorded in the flaccid, erectile and detumescent phases by 2 electrodes inserted into the corpus cavernosum. RESULTS: The electro-cavernosogram of the healthy volunteers registered in the flaccid phase regular slow waves and random action potentials. The wave variables declined significantly in the erectile phase (p < 0.01). In the study group, the slow wave variables in the flaccid phase exhibited a significant decrease (p < 0.05) compared to the healthy volunteers, and the rhythm was irregular. Erection did not occur with sildenafil administration or intracavernosal papaverine injection, and penile implant was performed. Biopsy examination showed degenerated muscle fibers, and fragmented collagen and elastic fibers with areas of fibrosis. CONCLUSION: A novel concept of the cause of erectile dysfunction was presented. Corpora cavernosa showed degenerative changes on histopathologic examination and exhibited diminished electromyography activity. They did not respond to sildenafil administration or intracavernosal papaverine injection. Penile implants were the only treatment. The condition is given the name 'hypoactive corpus cavernosum'. The cause of corpus cavernosum degenerative changes needs further study

    Simultaneous 13N-Ammonia and gadolinium first-pass myocardial perfusion with quantitative hybrid PET-MR imaging: a phantom and clinical feasibility study

    Get PDF
    Background Positron emission tomography (PET) is the non-invasive reference standard for myocardial blood flow (MBF) quantification. Hybrid PET-MR allows simultaneous PET and cardiac magnetic resonance (CMR) acquisition under identical experimental and physiological conditions. This study aimed to determine feasibility of simultaneous 13N-Ammonia PET and dynamic contrast-enhanced CMR MBF quantification in phantoms and healthy volunteers. Methods Images were acquired using a 3T hybrid PET-MR scanner. Phantom study: MBF was simulated at different physiological perfusion rates and a protocol for simultaneous PET-MR perfusion imaging was developed. Volunteer study: five healthy volunteers underwent adenosine stress. 13N-Ammonia and gadolinium were administered simultaneously. PET list mode data was reconstructed using ordered subset expectation maximisation. CMR MBF was quantified using Fermi function-constrained deconvolution of arterial input function and myocardial signal. PET MBF was obtained using a one-tissue compartment model and image-derived input function. Results Phantom study: PET and CMR MBF measurements demonstrated high repeatability with intraclass coefficients 0.98 and 0.99, respectively. There was high correlation between PET and CMR MBF (r = 0.98, p < 0.001) and good agreement (bias − 0.85 mL/g/min; 95% limits of agreement 0.29 to − 1.98). Volunteer study: Mean global stress MBF for CMR and PET were 2.58 ± 0.11 and 2.60 ± 0.47 mL/g/min respectively. On a per territory basis, there was moderate correlation (r = 0.63, p = 0.03) and agreement (bias − 0.34 mL/g/min; 95% limits of agreement 0.49 to − 1.18). Conclusion Simultaneous MBF quantification using hybrid PET-MR imaging is feasible with high test repeatability and good to moderate agreement between PET and CMR. Future studies in coronary artery disease patients may allow cross-validation of techniques

    On the pathogenesis of penile venous leakage: role of the tunica albuginea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Etiology of venogenic erectile dysfunction is not exactly known. Various pathologic processes were accused but none proved entirely satisfactory. These include presence of large venous channels draining corpora cavernosa, Peyronie's disease, diabetes and structural alterations in fibroblastic components of trabeculae and cavernous smooth muscles. We investigated hypothesis that tunica albuginea atrophy with a resulting subluxation and redundancy effects venous leakage during erection.</p> <p>Methods</p> <p>18 patients (mean age 33.6 ± 2.8 SD years) with venogenic erectile dysfunction and 17 volunteers for control (mean age 31.7 ± 2.2 SD years) were studied. Intracorporal pressure was recorded in all subjects; tunica albuginea biopsies were taken from 18 patients and 9 controls and stained with hematoxylin and eosin and Masson's trichrome stains.</p> <p>Results</p> <p>In flaccid phase intracorporal pressure recorded a mean of 11.8 ± 0.8 cm H<sub>2</sub>O for control subjects and for patients of 5.2 ± 0.6 cm, while during induced erection recorded 98.4 ± 6.2 and 5.9 ± 0.7 cmH<sub>2</sub>O, respectively. Microscopically, tunica albuginea of controls consisted of circularly-oriented collagen impregnated with elastic fibers. Tunica albuginea of patients showed degenerative and atrophic changes of collagen fibers; elastic fibers were scarce or absent.</p> <p>Conclusion</p> <p>Study has shown that during erection intracorporal pressure of patients with venogenic erectile dysfunction was significantly lower than that of controls. Tunica albuginea collagen fibers exhibited degenerative and atrophic changes which presumably lead to tunica albuginea subluxation and floppiness. These tunica albuginea changes seem to explain cause of lowered intracorporal pressure which apparently results from loss of tunica albuginea veno-occlusive mechanism. Causes of tunica albuginea atrophic changes and subluxation need to be studied.</p

    Association between mid-wall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction

    Get PDF
    Background—Current guidelines only recommend the use of an implantable cardioverter defibrillator (ICD) in patients with dilated cardiomyopathy (DCM) for the primary prevention of sudden cardiac death (SCD) in those with a left ventricular ejection fraction (LVEF)35%. Patients with a LVEF>35% also have low competing risks of death from non-sudden causes. Therefore, those at high-risk of SCD may gain longevity from successful ICD therapy. We investigated whether late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) identified patients with DCM without severe LV systolic dysfunction at high-risk of SCD. Methods—We prospectively investigated the association between mid-wall late gadolinium enhancement (LGE) and the pre-specified primary composite outcome of SCD or aborted SCD amongst consecutive referrals with DCM and a LVEF≥40% to our center between January 2000 and December 2011, who did not have a pre-existing indication for ICD implantation. Results—Of 399 patients (145 women, median age 50 years, median LVEF 50%, 25.3% with LGE) followed for a median of 4.6 years, 18 of 101 (17.8%) patients with LGE reached the pre-specified end-point, compared to 7 of 298 (2.3%) without (HR 9.2; 95% CI 3.9-21.8; p5% compared to those without LGE were 10.6 (95%CI 3.9-29.4), 4.9 (95% CI 1.3-18.9) and 11.8 (95% CI 4.3-32.3) respectively. Conclusions—Mid-wall LGE identifies a group of patients with DCM and LVEF≥40% at increased risk of SCD and low-risk of non-sudden death who may benefit from ICD implantation

    Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Assessment of Substrate for Ventricular Tachycardia With Hemodynamic Compromise.

    Get PDF
    Background: The majority of data regarding tissue substrate for post myocardial infarction (MI) VT has been collected during hemodynamically tolerated VT, which may be distinct from the substrate responsible for VT with hemodynamic compromise (VT-HC). This study aimed to characterize tissue at diastolic locations of VT-HC in a porcine model. Methods: Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging was performed in eight pigs with healed antero-septal infarcts. Seven pigs underwent electrophysiology study with venous arterial-extra corporeal membrane oxygenation (VA-ECMO) support. Tissue thickness, scar and heterogeneous tissue (HT) transmurality were calculated at the location of the diastolic electrograms of mapped VT-HC. Results: Diastolic locations had median scar transmurality of 33.1% and a median HT transmurality 7.6%. Diastolic activation was found within areas of non-transmural scar in 80.1% of cases. Tissue activated during the diastolic component of VT circuits was thinner than healthy tissue (median thickness: 5.5 mm vs. 8.2 mm healthy tissue, p < 0.0001) and closer to HT (median distance diastolic tissue: 2.8 mm vs. 11.4 mm healthy tissue, p < 0.0001). Non-scarred regions with diastolic activation were closer to steep gradients in thickness than non-scarred locations with normal EGMs (diastolic locations distance = 1.19 mm vs. 9.67 mm for non-diastolic locations, p < 0.0001). Sites activated late in diastole were closest to steep gradients in tissue thickness. Conclusions: Non-transmural scar, mildly decreased tissue thickness, and steep gradients in tissue thickness represent the structural characteristics of the diastolic component of reentrant circuits in VT-HC in this porcine model and could form the basis for imaging criteria to define ablation targets in future trials

    Influence of halloysite nanotubes on physical and mechanical properties of cellulose fibres reinforced vinyl ester composites

    Get PDF
    Natural fibres are generally added to polymer matrix composites to produce materials with the desirable mechanical properties of higher specific strength and higher specific modulus while at the same time to maintain a low density and low cost. The physical and mechanical properties of polymer composites can be enhanced through the addition of nanofillers such as halloysite nanotubes. This article describes the fabrication of vinyl ester eco-composites and eco-nanocomposites and characterizes these samples in terms of water absorption, mechanical and thermal properties. Weight gain test and Fourier transform infrared analysis indicated that 5% halloysite nanotube addition gave favourable reduction in the water absorption and increased the fibre–matrix adhesion leading to improved strength properties in the eco-nanocomposites. However, halloysite nanotube addition resulted in reduced toughness but improved thermal stability
    corecore