30 research outputs found

    Physiological levels of estradiol limit murine osteoarthritis progression

    Get PDF
    Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms

    Pulsed administration for physiological estrogen replacement in mice

    Get PDF
    Estrogens are important regulators of body physiology and have major effects on metabolism, bone, the immune- and central nervous systems. The specific mechanisms underlying the effects of estrogens on various cells, tissues and organs are unclear and mouse models constitute a powerful experimental tool to define the physiological and pathological properties of estrogens. Menopause can be mimicked in animal models by surgical removal of the ovaries and replacement therapy with 17β-estradiol in ovariectomized (OVX) mice is a common technique used to determine specific effects of the hormone. However, these studies are complicated by the non-monotonic dose-response of estradiol, when given as therapy. Increased knowledge of how to distribute estradiol in terms of solvent, dose, and administration frequency, is required in order to accurately mimic physiological conditions in studies where estradiol treatment is performed. In this study, mice were OVX and treated with physiological doses of 17β-estradiol-3-benzoate (E2) dissolved in miglyol or PBS. Subcutaneous injections were performed every 4 days to resemble the estrus cycle in mice. Results show that OVX induces an osteoporotic phenotype, fat accumulation and impairment of the locomotor ability, as expected. Pulsed administration of physiological doses of E2 dissolved in miglyol rescues the phenotypes induced by OVX. However, when E2 is dissolved in PBS the effects are less pronounced, possibly due to rapid wash out of the steroid. </p

    Sex and gender in infection and immunity: addressing the bottlenecks from basic science to public health and clinical applications.

    Get PDF
    Although sex and gender are recognized as major determinants of health and immunity, their role is rarely considered in clinical practice and public health. We identified six bottlenecks preventing the inclusion of sex and gender considerations from basic science to clinical practice, precision medicine and public health policies. (i) A terminology-related bottleneck, linked to the definitions of sex and gender themselves, and the lack of consensus on how to evaluate gender. (ii) A data-related bottleneck, due to gaps in sex-disaggregated data, data on trans/non-binary people and gender identity. (iii) A translational bottleneck, limited by animal models and the underrepresentation of gender minorities in biomedical studies. (iv) A statistical bottleneck, with inappropriate statistical analyses and results interpretation. (v) An ethical bottleneck posed by the underrepresentation of pregnant people and gender minorities in clinical studies. (vi) A structural bottleneck, as systemic bias and discriminations affect not only academic research but also decision makers. We specify guidelines for researchers, scientific journals, funding agencies and academic institutions to address these bottlenecks. Following such guidelines will support the development of more efficient and equitable care strategies for all

    Sex and gender in infection and immunity: addressing the bottlenecks from basic science to public health and clinical applications

    Get PDF
    Although sex and gender are recognized as major determinants of health and immunity, their role israrely considered in clinical practice and public health. We identified six bottlenecks preventing theinclusion of sex and gender considerations from basic science to clinical practice, precision medicineand public health policies. (i) A terminology-related bottleneck, linked to the definitions of sex andgender themselves, and the lack of consensus on how to evaluate gender. (ii) A data-relatedbottleneck, due to gaps in sex-disaggregated data, data on trans/non-binary people and genderidentity. (iii) A translational bottleneck, limited by animal models and the underrepresentation ofgender minorities in biomedical studies. (iv) A statistical bottleneck, with inappropriate statisticalanalyses and results interpretation. (v) An ethical bottleneck posed by the underrepresentation ofpregnant people and gender minorities in clinical studies. (vi) A structural bottleneck, as systemicbias and discriminations affect not only academic research but also decision makers. We specifyguidelines for researchers, scientific journals, funding agencies and academic institutions to addressthese bottlenecks. Following such guidelines will support the development of more efficient andequitable care strategies for all

    The role of activation functions 1 and 2 of estrogen receptor-α for the effects of estradiol and selective estrogen receptor modulators in male mice

    Get PDF
    Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)-α. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a non-functional ERα had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ERα for the effects of E2 and SERMs on bone mass in males. Three mouse models lacking either ERαAF-1 (ERαAF-1(0)), ERαAF-2 (ERαAF-2(0)) or the total ERα (ERα(−/−)) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, while it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ERα(−/−) or ERαAF-2(0) mice. However, the effects of E2 in orx ERαAF-1(0) mice were tissue-dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERαAF-1 for the effects of SERMs, we treated orx WT and ERαAF-1(0) mice with Raloxifene (Ral), Lasofoxifene (Las), Bazedoxifene (Bza) or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency towards increased cortical bone parameters. Importantly, all SERM-effects were absent in the orx ERαAF-1(0) mice. In conclusion, ERαAF-2 is required for the estrogenic effects on all evaluated parameters, while the role of ERαAF-1 is tissue specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERαAF-1. Our findings might contribute to the development of bone specific SERMs in males

    Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss

    Get PDF
    Probiotic bacteria can protect from ovariectomy (ovx)-induced bone loss in mice. Akkermansia muciniphila is considered to have probiotic potential due to its beneficial effect on obesity and insulin resistance. The purpose of the present study was to determine if treatment with pasteurized Akkermansia muciniphila (pAkk) could prevent ovx-induced bone loss. Mice were treated with vehicle or pAkk for 4 wk, starting 3 days before ovx or sham surgery. Treatment with pAkk reduced fat mass accumulation confirming earlier findings. However, treatment with pAkk decreased trabecular and cortical bone mass in femur and vertebra of gonadal intact mice and did not protect from ovx-induced bone loss. Treatment with pAkk increased serum parathyroid hormone (PTH) levels and increased expression of the calcium transporter Trpv5 in kidney suggesting increased reabsorption of calcium in the kidneys. Serum amyloid A 3 (SAA3) can suppress bone formation and mediate the effects of PTH on bone resorption and bone loss in mice and treatment with pAkk increased serum levels of SAA3 and gene expression of Saa3 in colon. Moreover, regulatory T cells can be protective of bone and pAkk-treated mice had decreased number of regulatory T cells in mesenteric lymph nodes and bone marrow. In conclusion, treatment with pAkk protected from ovx-induced fat mass gain but not from bone loss and reduced bone mass in gonadal intact mice. Our findings with pAkk differ from some probiotics that have been shown to protect bone mass, demonstrating that not all prebiotic and probiotic factors have the same effect on bone.Peer reviewe
    corecore