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Abstract

Among patients with knee osteoarthritis (OA), postmenopausal women are over-
represented. The purpose of this study was to determine whether deficiency of female 
sex steroids affects OA progression and to evaluate the protective effect of treatment 
with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. 
Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX 
or sham-operated mice underwent surgery for destabilization of the medial meniscus 
(DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX 
of OA mice did not influence the cartilage phenotype or synovial thickness, while both 
cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX 
compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX 
mice displayed decreased motor activity, reduced threshold of pain sensitivity, and 
increased number of T cells in the inguinal lymph nodes compared to sham-operated 
mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage 
damage and thickening of the synovium in OVX OA mice. The motor activity was 
improved after E2 replacement at the 2 weeks time point, which was also associated with 
lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss 
of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was 
reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a 
physiological dose of E2 exerts a protective role by reducing OA symptoms.

Introduction

Osteoarthritis (OA) is a debilitating disease characterized 
by degenerative processes of the articular cartilage that 
are exacerbated by mild local inflammation (Robinson 
et  al. 2016). Erosion of the joint cartilage is associated 

with structural subchondral bone damage, increased pain 
sensitivity also in body parts that are not directly affected 
by the disease, and mild inflammation of the synovium 
(Loeser et al. 2012).
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OA affects more than 240 million people globally and 
represents a growing social problem due to the important 
repercussions on the economy and the life of the patients. 
Pain, disability, and social isolation lead to a drastic decline 
in the quality of life for OA patients (Nelson 2018, Hawker 
2019, Allen et al. 2022). Results from a substantial amount 
of studies on OA are now available, with an important 
contribution from preclinical models that compensate 
for the limited access to human OA joint tissue at an early 
stage of the disease (Vincent 2020).

Nevertheless, the complex mechanisms underlying 
OA pathology are still not completely understood and 
therapies able to revert the disease progression have not 
been identified. However, it is well known that the female 
sex represents a significant risk factor.

Among OA patients over the age of 40, postmenopausal 
women are over-represented, with a sex difference in 
the incidence of knee OA ranging from 46% in women 
to 21% in men (Prieto-Alhambra et  al. 2014, Hunter & 
Bierma-Zeinstra 2019). Epidemiological studies associate 
menopause with articular cartilage degeneration, OA 
severity, and unsuccessful joint replacement. The decline 
of sex steroids after menopause, in particular estrogens, 
has been investigated as responsible for the triggering of 
the disease (Talsania & Scofield 2017, Hunter & Bierma-
Zeinstra 2019). Estrogen receptors (ERs), ERα and ERβ, 
have been found in several tissues of the joint (Capellino 
et  al. 2007, Emmanuelle et  al. 2021, Tang et  al. 2021). 
Moreover, estradiol is a well-known regulator of bone 
and immune system homeostasis and also controls motor 
ability and pain sensitivity (Straub 2007). Although 
epidemiological studies reported that postmenopausal 
women have a higher risk to develop OA compared to 
men, the association between the risk to develop OA 
and hormonal factors is not clear (de Klerk et  al. 2009). 
The effect of ovariectomy (OVX) on experimental OA 
models consistently points toward the deterioration 
of the articular cartilage, while the effect of estradiol 
replacement displays conflicting results (Roman-Blas 
et al. 2009). The discrepancy is largely dependent on the 
experimental setup, including dose, frequency, and route 
of administration of the steroid hormone (Turner et  al. 
1997, Rasanen & Messner 1999, Christgau et  al. 2004, 
Sniekers et al. 2008, 2010).

The purpose of this study was to clarify the role of 
female sex steroid deficiency in OA progression and to 
determine the effect of treatment with a physiological dose 
of estradiol administered in a pulsed manner, on cartilage 
and bone alterations, inflammation, and impairment of 
motor ability and pain sensitivity.

Materials and methods

Animals

Female C57BL/6J mice (Taconic, Borup, Denmark) were 
kept in the animal facility at the University of Gothenburg 
(Sweden) under regular lighting conditions (12 h light/12 
h darkness cycle), fed soya-free laboratory chow and tap 
water ad libitum. Mice were acclimatized for 7 days before 
initiating the surgical procedures. The experiments were 
carried out following the timelines described in Fig. 1A 
and B. All the experimental procedures were performed in 
accordance with the ethical permit (2814-2020) approved by 
the Regional Ethical Review Board in Gothenburg, Sweden.

Surgical procedures and 17β-estradiol treatment

Female mice, 8 weeks old, were employed in the study, 
and all underwent OVX or sham surgery as previously 
described (Corciulo et  al. 2021). Mice were allowed to 
recover from the OVX procedure for 10 days before the 
surgery for destabilization of the medial meniscus (DMM). 
Mice were anesthetized, the right knee was shaved, and 
the area was sterilized with chlorhexidine solution. A 
1-cm-long incision was made longitudinally on the medial 
area of the knee to expose the joint. The joint capsule was 
cut and the patella was dislocated to allow the excision of 
the menisco-tibial ligament. The wound on the skin was 
closed with silk sutures. Buprenorphine (0.1 mg/kg) was 
injected intraperitoneally as a postoperative analgesic. The 
control group included animals that underwent control 
surgery for DMM in which the menisco-tibial ligament was 
visualized but not transected.

An oil-based stock solution of E2 (17β-estradiol-3-
benzoate, Sigma-Aldrich; 1 mg/mL) was prepared by 
mixing E2 with inert miglyol oil (Miglyol812, OmyaPeralta 
GmbH, Hamburg, Germany). E2 was dissolved by stirring 
the solution for 3 h at 150°C and then further diluted to 
1.5 µg/mL in miglyol before the injection. Mice received 
the first s.c. injection (100 µL) of E2 (0.15 µg E2/mouse/
injection) or vehicle (Veh) immediately after the DMM 
procedure. The subsequent doses were injected every 4 days 
to mimic the estrus cycle in mice.

Experimental groups

The mice in this study were divided into four groups and 
included in the same experiment:

1. Control surgery for DMM; sham-operated; injections 
with Veh.
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2. DMM surgery; sham-operated; injections with Veh.
3. DMM surgery; OVX; injections with Veh.
4. DMM surgery; OVX; injections with E2.

In the first set of analyses, groups 1 and 2 were compared in 
order to determine the severity and phenotype of the OA 
disease. The results are presented in Supplementary Figs 3, 
4, 5, 6, 7, and 8 (see section on supplementary materials 
given at the end of this article). Group 1 is named ‘Control’ 
and group 2 is named ‘OA’ in the figures.

In the second approach, the three OA groups (groups 
2–4, all subjected to DMM) were compared to evaluate 
the role of female sex steroid deficiency (OVX) and E2 
replacement on OA progression. These results are presented 
in Figs 1, 2, 3, 4, 5, 6, and 7. Group 2 is named ‘Sham+Veh’, 

group 3 is ‘OVX+Veh’, group 4 is named ‘OVX+E2’. Thus, 
group 2 is used in both analyses.

Assessment of motor ability and pain sensitivity

To assess the locomotor ability and pain sensitivity of 
the experimental animals, 2 different motor tests and the 
von Frey test for determination of pain sensitivity were 
performed 2 days before the experiment end-point. Mice 
were acclimatized in the procedure room for 1 h before the 
beginning of the tests.

Spontaneous locomotor activity was analyzed using 
the open-field test. Each mouse was placed in the center 
of a 60 × 60 × 60 cm chamber to allow free exploration. 
The experiments were performed for 15 min. The motor 

Figure 1
Experimental plan, uterus weight, and 
testosterone measurement. The schemes 
describe the timelines of the experiments 
including the 8 weeks (A) and 2 weeks E2 
treatment experiments (B). Sham-operated and 
ovariectomized (OVX) mice were subjected to 
DMM surgery and treated with either vehicle 
(Veh) or 17β-estradiol (E2; 0.15 µg) every 4 days 
for 2 (A) and 8 weeks (B). Uterus weights confirm 
successful ovariectomy surgery and estradiol 
replacement after 2 weeks (C) and 8 weeks (D) of 
treatment. The amount of testosterone was 
measured in serum after 8 weeks of treatment 
(E). The dashed line indicates the mean value of 
the control group shown in Supplementary Fig. 1. 
Data are expressed as mean ± s.d. and analyzed 
by one-way ANOVA followed by Dunnet’s post hoc 
test. ns = not statistically significant, **P < 0.01, 
****P < 0.0001.
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parameters were measured by computerized analysis. 
Mouse behavior was recorded and videos were analyzed 
using Viewer software (Biobserve, Sankt Augustin, 
Germany).

Forced locomotor activity was tested using the rotarod 
test. Mice were placed on a rotarod apparatus (Panlab, 
Harvard Apparatus, Cornella, Spain) and tested for 5 
min with constantly increasing acceleration from 4 to  
40 rpm. The latency to fall was registered for each animal. 
To exclude differences in learning skills between the groups 
of mice, each group was assessed over 3 trials per day for 
2 consecutive days. The mice were given 30-min intertrial 
rest interval.

Von Frey filament stimulus-limb withdrawal test was 
performed to assess pain sensitivity on both hind paws of 
the mice included in the 2 weeks treatment experiment. 
The mice were placed in a clear plastic cage on top of a 
custom-manufactured metal mesh platform allowing full 
access to all paws. The mice were allowed to acclimatize 
to their surroundings for at least 30 min. The target for 
stimulation was the mid-plantar left hind paw, with a 
set of calibrated von Frey filaments of increasing stiffness 

(0.004–8 g) presented perpendicularly to the paw. In the 
process of the experimental procedure, the mechanical 
stimulation intensity increased and the behavior of the 
mouse was observed. Withdrawal of the hind limb upon 
introduction or immediately upon the removal of the 
filament were considered positive responses. The procedure 
was repeated 5 times every 30 s, and the head withdrawal 
threshold was recorded.

Termination of the experiments and  
tissue collection

Mice were anesthetized with a mixture of ketamine/
dexmedetomidine hydrochloride, and body composition 
was determined using a dual-energy x-ray absorptiometry 
(DXA) scan (UltraFocusDXA, Faxitron Bioptics, Tucson, AZ, 
USA). Anesthetized mice were euthanized by exsanguination 
followed by cervical dislocation. Uteri were dissected and 
weights were noted (Fig. 1A, B and Supplementary Fig. 
1A, B). Inguinal lymph nodes (iLN) were collected for flow 
cytometry analysis. Knee joints and lumbar vertebrae were 
collected for micro-CT (µCT) analysis.

Figure 2
E2 replacement prevents cartilage degradation 
and hyperplasia of the synovial membrane in mice 
with OA. Sham-operated and ovariectomized 
(OVX) mice were subjected to destabilization of the 
medial meniscus (DMM) surgery and treated with 
either vehicle (Veh) or 17β-estradiol (E2; 0.15 µg)  
every 4 days for 8 weeks. Representative images 
of the knee articular surfaces stained with the 
Safranin-O/fast green (A, scale bar = 500 µm). 
Representative figures of hematoxylin/eosin 
staining of the knee joint (B, 10× magnification on 
the top section, 20× magnification on the bottom 
section; scale bar = 500 µm). The graphs show the 
plotted OARSI (Osteoarthritis Research Society 
International) score quantification (C) and the 
quantification of the synovial thickness (synovial 
area/perimeter; D). The dashed line indicates the 
mean value of the control group shown in 
Supplementary Fig. 2. Data are expressed as mean 
± s.d. and analyzed by one-way ANOVA followed by 
Dunnet’s post hoc test. *P < 0.05, ns = not 
statistically significant.
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Testosterone measurements in serum

Peripheral blood samples from all mice were collected 
at termination in 500 µL tubes containing serum gel 
with a clotting activator (Microvette 500 Z-Gel, Sarstedt, 
Numbrecht, Germany). The serum was extracted and 
stored at −80°C until use. Steroids were extracted from 
serum (200 µL) and concentrations of testosterone were 
analyzed by liquid chromatography-mass spectrometry 
as previously described (HPLC-MS; Acquity UPLC 
system and TQ-XS triple quadrupole mass spectrometer) 
(Ohlsson et al. 2022).

Flow cytometry analysis

Lymph nodes were transferred to a meshed-cap vial (35 µm 
mesh), pressed through it with 400 µL of PBS and counted 
using an automated cell counter (Sysmex, Norderstedt, 
Germany). Cells were resuspended in FACS buffer (FBS 
2%, EDTA 2 mM in PBS) and stained with eBioscience 
Fixable Viability Dye eFluor 780 (Thermo Fisher Scientific), 
followed by incubation with Fc-gamma receptor block 
(Becton Dickinson). The cells were then stained with 
fluorochrome-conjugated antibodies: CD3-BV510, CD4-
A488 or CD4-APC, CD8-FITC or CD8-BV421 (BioLegend, 

Figure 3
E2 treatment for 2 weeks improves the motor 
ability and pain sensitivity in mice with OA. 
Sham-operated and ovariectomized (OVX) mice 
were subjected to destabilization of the medial 
meniscus (DMM) surgery and treated with either 
vehicle (Veh) or 17β-estradiol (E2; 0.15 µg) every  
4 days for 2 or 8 weeks. The graphs show the 
track length and the velocity of the experimental 
mice in the arena of the open field test (A) and the 
latency to fall from the rotarod apparatus (B). The 
von Frey test shows the paw withdrawal threshold 
for the OA leg and the contralateral leg (C). The 
dashed line indicates the mean value of the 
control group shown in Supplementary Fig. 3. 
Data are expressed as mean ± s.d. and analyzed 
by one-way ANOVA followed by Dunnet’s post hoc 
test. *P < 0.05; **P < 0.01; ***P < 0.001, ns = not 
statistically significant.
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San Diego, CA, USA). The cells were immediately acquired 
using FACSVerse (Becton Dickinson) and the data were 
analyzed with FlowJo software Version 10 (FlowJo_v10.6.1, 
Ashland, OR, USA). Forward and side scatter gates were 
used to discriminate doublets and debris (FSC-A, FSC-H,  
SSC-A × SSC-H). Fluorescence minus one was used as 
control. Only viable cells were included in the analysis.

Micro-computed tomography

After sacrifice, the right hind leg was excised and the soft 
tissue was carefully removed from the bone. Samples were 
fixed in 4% paraformaldehyde for 3 days and then stored in 
70% ethanol. The subchondral area for the trabecular bone 
evaluation starts below the cortical bone in the epiphyseal 

region and extends for a longitudinal distance of 495 µm 
in the distal direction. The region of interest (ROI) for the 
measurement of the subchondral cortical bone was defined 
as the 742 µm area extending in the distal direction starting 
from the tibial plateau. The ROI for the lumbar vertebrae 
L3 was defined as the 641 µm area starting at 1.296 mm in 
the caudal direction. The selected area was evaluated in a 
scanning tube providing a voxel size of 4.49 µm isotropically 
and scanned at 50 kV, 200 µA (Skyscan 1172 scanner; Bruker 
MicroCT, Kontich, Belgium). The samples were kept on 
paper soaked in PBS to avoid dehydration. Analysis of the 
morphology and measurement of bone features by μCT 
was performed using the software CtAN (1.13.2.1, Bruker 
microCT). A 3D reconstruction of the knee joint was 
performed by using CTvox (2.5.0 r892, Bruker microCT).

Figure 4
OVX and E2 treatment partly change the body 
composition of OA mice. Sham-operated and 
ovariectomized (OVX) mice were subjected to 
destabilization of the medial meniscus (DMM) 
surgery and treated with either vehicle (Veh) or 
17β-estradiol (E2; 0.15 µg) every 4 days for 8 
weeks. The graphs describe the total body 
weight (A), DXA measurements of the body fat 
percentage (B), lean weight (C), total body bone 
mineral content (BMC) (D), and areal bone 
mineral density (aBMD) of the lumbar spine 
(LS) (E). The dashed line indicates the mean 
value of the control group shown in 
Supplementary Fig. 4. Data are expressed as 
mean ± s.d. and analyzed by one-way ANOVA 
followed by Dunnet’s post hoc test. *P < 0.05, 
***P < 0.001, ns = not statistically significant.
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Histology

After the µCT analysis, the knees were decalcified in 10% 
EDTA (Sigma-Aldrich) for 21 days at 4°C. Specimens were 
embedded in paraffin blocks and 5-µm coronal sections 
of the knees were obtained. The sections were used for 
hematoxylin/eosin (H&E) staining and Safranin-O/fast 
green staining.

Pictures of the slides were taken using the EVOS XL 
core microscope (Thermo Fisher Scientific). Assessment 
of OA was performed by evaluation of Safranin-O stained 
slides in a blinded fashion by two observers. OARSI 
score was determined blindly as previously described 
(Glasson et  al. 2010). Briefly, for histologic scoring, 
slides were stained using the Safranin-O fast green 
technique. The OA severity was determined by using a 

0–6 scoring system: 0 for normal cartilage; 0.5 in case of 
loss of Safranin-O without structural changes; 1 for small 
fibrillation without loss of cartilage; 2 when vertical 
clefts were present; 3, 4, 5, and 6 when vertical clefts and 
erosion covered <25%, 25–50%, 50–75%, and >75% of 
the articular surface, respectively.

Data analysis

Gaussian distribution was assumed for all the data, and 
results are expressed as mean ± s.d. Statistically significant 
differences between groups were determined using 
Student’s t-test or one-way ANOVA followed by Dunnet’s 
post hoc test, as appropriate. Analyses were performed using 
GraphPad Prism software version 9 (GraphPad, CA, USA).

Figure 5
E2 treatment does not affect the cortical bone of 
OA mice. Sham-operated and ovariectomized 
(OVX) mice were subjected to destabilization of the 
medial meniscus (DMM) surgery and treated with 
either vehicle (Veh) or 17β-estradiol (E2; 0.15 µg)  
every 4 days for 8 weeks. Representative pictures 
of 3D knee joint reconstruction from µCT data (A). 
The yellow rectangles highlight the areas of bone 
loss and pittings of the articular surface. The red 
circles define the area where the irregular articular 
bone surface is visible. The graphs contain the 
plotted data from the analysis of the µCT data for 
the cortical bone volume/tissue volume (BV/TV; B) 
and the cortical bone mineral density (BMD; C). 
The dashed line indicates the mean value of the 
control group shown in Supplementary Fig. 5. Data 
are expressed as mean ± s.d. and analyzed by 
one-way ANOVA followed by Dunnet’s post hoc 
test. ***P < 0.001, ns = not statistically significant. 
A full color version of this figure is available at 
https://doi.org/10.1530/JOE-22-0032.
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Figure 6
E2 treatment limits the subchondral trabecular 
bone loss in OVX OA mice. Sham-operated and 
ovariectomized (OVX) mice were subjected to 
destabilization of the medial meniscus (DMM) 
surgery and treated with either vehicle (Veh) or 
17β-estradiol (E2; 0.15 µg) every 4 days for 8 
weeks. The graphs display the plotted data from 
the analysis of the µCT data for the trabecular 
subchondral bone volume/tissue volume (BV/TV; 
A), trabecular bone mineral density (BMD; B), 
trabecular (Trab.) thickness (C), and bone surface/
bone volume (bone erosion; D). The dashed line 
indicates the mean value of the control group 
shown in Supplementary Fig. 6. Data are 
expressed as mean ± s.d. and analyzed by 
one-way ANOVA followed by Dunnet’s post hoc 
test. *P < 0.05, **P < 0.01, ***P < 0.001, ns = not 
statistically significant.

Figure 7
OVX and E2 treatments influence the number of 
CD4+ T cells and CD8+ T cells in inguinal lymph 
nodes of OA mice. Sham-operated and 
ovariectomized (OVX) mice were subjected to 
destabilization of the medial meniscus (DMM) 
surgery and treated either with vehicle (Veh) or 
17β-estradiol (E2; 0.15 µg) every 4 days for 8 
weeks. The graphs show the plotted data from 
the flow-cytometry analysis of total T cells, CD4+  
T cells, and CD8+ T cells after 2 weeks (A–C) and  
8 weeks of E2 treatment (D–F). The dashed line 
indicates the mean value of the control group 
shown in Supplementary Fig. 7. Data are 
expressed as mean ± s.d. and analyzed by 
one-way ANOVA followed by Dunnet’s post hoc 
test. *P < 0.05; **P < 0.01, ns = not statistically 
significant.
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Results

OA mice display cartilage degradation and increased 
subchondral cortical bone at 8 weeks post-DMM 
surgery without effects on T cell numbers, motor 
activity, or pain threshold

The OA phenotype developing after the DMM surgery was 
analyzed by histologic Safranin-O staining of the knee 
followed by assessment of the OARSI score at 8 weeks post-
surgery. Cartilage degeneration in OA mice was visible 
as loss of proteoglycans and fibrillations on the articular 
surface that lead to an increased OARSI score compared 
to control mice (Supplementary Fig. 2A and B). Synovial 
hyperplasia was determined by measuring the synovial 
thickness following H&E staining. No difference in synovial 
thickness was detected between the control and OA mice at 
8 weeks post-DMM surgery (Supplementary Fig. 2C and D).

OA and control mice were subjected to spontaneous 
and forced locomotor activities at 2 and 8 weeks post-DMM 
surgery. No differences in motor abilities were detected 
between the groups at either time-point (Supplementary 
Fig. 3A and B). At 2 weeks post-surgery, no differences in 
the pain threshold were detected between OA and control 
mice (Supplementary Fig. 3C).

Furthermore, OA mice did not differ from control mice 
in body weight, fat and lean mass, and bone mineral content 
(BMC) measured by DXA after 8 weeks (Supplementary Fig. 
4A, B, C, and D).

DXA scanning of the lumbar vertebrae (L3 and L4) 
showed increased areal bone mineral density (aBMD) in 
OA mice compared to controls (Supplementary Fig. 4E).

The 3D reconstruction of the µCT scanning showed 
alterations of the articular surface in both femur and tibia 
of OA mice compared to controls. The loss of bone in the 
joint is visible as bone pitting on the femur and loss of 
density on the tibia in OA mice compared to the control 
(Supplementary Fig. 4A). Quantification of the µCT 
scanning showed an increase of cortical bone volume/tissue 
volume (BV/TV) in the subchondral area of the tibia in OA 
mice compared to the control group (Supplementary Fig. 
5B), in accordance with the development of subchondral 
bone sclerosis in the OA mice (Li et al. 2013). However, the 
cortical BMD did not change between the experimental 
groups (Supplementary Fig. 5C).

The trabecular bone volume in the tibial subchondral 
area did not differ between OA and control mice 
(Supplementary Fig. 6).

The number of total T cells (CD3+ cells) as well as 
the CD4+ and CD8+T cells in iLN were analyzed by flow 

cytometry. No differences between OA and control mice 
were detected at 2 weeks post-surgery (Supplementary Fig. 
7A, B, and C) or 8 weeks post-surgery (Supplementary Fig. 
7D, E, and F). The gating strategy for the T cell populations 
is shown in Supplementary Fig. 8.

Estrogen prevents cartilage degradation and 
decreases synovial hyperplasia in mice with OA

To determine the influence of physiological estrogen 
levels on OA disease progression, mice were subjected to 
DMM surgery after OVX or sham operation and treated 
with vehicle (Veh) or E2 (0.15 µg) every 4 days for 8 weeks. 
The uterus is a highly estrogen-responsive tissue and 
measurement of the uterus weight is used to confirm 
successful OVX surgery and E2 replacement (Modder et al. 
2004). As expected, the weight of the uterus drastically 
declined after OVX and increased after both 2 and 8 
weeks of E2 treatment (Fig. 1C and D). Additionally, the 
serum levels of testosterone were decreased in OVX+Veh 
compared to Sham+Veh treated mice, measured 8 weeks 
after the beginning of the treatment (Fig. 1E).

The OARSI score revealed no difference in cartilage 
degradation in the OVX+Veh group compared to 
Sham+Veh, while E2 replacement partially prevented 
cartilage degeneration (Fig. 2A and C). The thickness of the 
synovial membrane did not differ between the OVX+Veh 
and Sham+Veh groups, but a significant decrease in 
synovial thickness was observed in OVX mice treated with 
E2 (Fig. 2B and D).

Estrogen ameliorates locomotor activity and pain 
sensitivity 2 weeks after OA induction

The mice were subjected to motor tests 2 and 8 weeks after 
DMM surgery. At 2 weeks post-DMM surgery, OVX mice 
showed a tendency toward decreased movement compared 
to mice with intact ovaries (Fig. 3A, left). E2 treatment for 
2 weeks increased both track length and velocity compared 
with OVX mice receiving Veh treatment. E2 treatment also 
enhanced the forced locomotor activity by increasing the 
time that the animals spent walking on the apparatus (Fig. 
3B, left). At 8 weeks post-DMM surgery, neither OVX nor 
E2 treatment influenced the motor ability of the mice (Fig. 
3A and B, right).

Mechanical allodynia was tested 2 weeks after DMM 
surgery. Alteration of the motor behavior in OVX+Veh 
mice at this time point was associated with decreased pain 
threshold (i.e. increased pain sensitivity) on the paw of the 
OA leg in the OVX+Veh group compared with Sham+Veh. 
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Replacement with a physiological concentration of E2 
increased the threshold for pain sensitivity in the paw 
of the OA leg (Fig. 3C, left). No differences between the 
groups were found for the paw on the contralateral leg (Fig. 
3C, right).

Estrogen partly changes the body composition of 
mice with OA

The body composition of mice with OA was analyzed by 
DXA. The body weight did not differ between vehicle-
treated sham and OVX groups (Fig. 4A) despite increased 
fat percentage in OVX mice compared to sham (Fig. 4B). E2 
treatment for 8 weeks slightly increased the body weight 
compared with OVX+Veh (Fig. 4A) but did not prevent the 
accumulation of fat tissue (Fig. 4B). Instead E2-treated mice 
displayed a slight increase in lean mass (Fig. 4C) compared 
to OVX+Veh.

A reduction of the BMC was shown in OA mice after 
OVX compared to mice with intact ovaries, while this 
effect was reversed by E2 treatment (Fig. 4D).

Scanning of the lumbar vertebrae (L3 and L4) showed 
a reduction of the aBMD in OVX+Veh compared to the 
Sham+Veh group (Fig. 4E). Treatment with E2 prevented 
the loss of aBMD from the lumbar spine (Fig. 4E).

Estrogen inhibits OVX-induced trabecular but not 
cortical bone loss in mice with OA

In Sham+Veh and OVX+Veh mice, the articular surface 
appeared irregular and treatment with E2 improved the 
appearance of the articular surface (Fig. 5A). However, 
neither OVX nor E2 treatment affected the cortical bone 
volume value in OA mice at 8 weeks post-DMM surgery 
(Fig. 5B). Cortical BMD decreased significantly after OVX 
compared with sham, but treatment with E2 did not result 
in a significant increase of the BMD (Fig. 5C).

The trabecular bone volume and BMD in the 
subchondral area were significantly decreased in OVX+Veh 
compared to the Sham+Veh group, while E2 treatment did 
not affect BV/TV or BMD (Fig. 6A and B). OVX resulted in 
decreased trabecular thickness (Fig. 6C) and increased bone 
erosion (bone surface/bone volume, Fig. 6D) compared 
with sham, and E2 replacement prevented the decrease of 
trabecular thickness and diminished bone erosion in the 
subchondral area.

Estrogen influences the number of T cells in the iLN 
of mice with OA

Cells from iLN were isolated at 2 and 8 weeks after 
DMM surgery and analyzed by flow cytometry for T cell 

populations in sham and OVX mice treated with Veh or 
E2. OVX resulted in an increase of total as well as CD4+ 
and CD8+ T cells in iLN, while E2 treatment for 2 weeks 
had no effect on the number of T cells (Fig. 7A, B and C). 
In contrast, at 8 weeks post-DMM surgery, the number 
of T cells in iLN did not differ between Sham+Veh and 
OVX+Veh, while 8 weeks treatment of OVX mice with E2 
significantly decreased the number of total as well as CD4+ 
and CD8+ T cells in iLN (Fig. 7D and E).

Discussion

The purpose of this study was to evaluate the role of female 
sex steroid deficiency and E2 replacement to OVX mice on 
OA progression. OVX mice subjected to an experimental 
model of OA were treated with a physiological dose of E2 
in an early phase of the OA disease progression (Byers et al. 
2012). E2 was administered in a pulsed fashion to resemble 
normal hormone fluctuations during the murine estrous 
cycle (Corciulo et al. 2021).

In this study, OVX of mice subjected to OA only resulted 
in a nonsignificant tendency towards increased cartilage 
degradation and synovial thickness compared to OA mice 
with intact ovaries. However, E2 replacement prevented 
proteoglycan loss and fibrillation of the articular surface 
as well as the thickening of the synovium, suggesting an 
important protective role for this hormone in joint tissues. 
Similarly, Moritake and coworkers described osteopenia of 
the subchondral bone after OVX in mice subjected to OA, 
and no differences in the cartilage appearance and OARSI 
score between sham-operated and OVX mice (Moritake 
et al. 2017). Testosterone has been negatively linked to OA 
progression (Ma et  al. 2007). In this study, the levels of 
testosterone were significantly decreased in serum from 
OVX+Veh mice compared to Sham+Veh. It is possible that 
the decline in testosterone compensates for the loss of 
estradiol after OVX in mice subjected to OA, resulting in 
the lack of difference in OARSI score and synovial thickness 
between sham and OVX mice with OA.

In contrast to our results, previous studies have 
demonstrated worse OA outcomes in OVX animals 
compared to sham-operated controls (Ge et  al. 2019). 
In a model of postmenopausal OA in rats, OVX surgery 
accelerated cartilage and bone turnover, an effect that 
could be inhibited by the administration of estrogen (Xu 
et  al. 2019) and ER modulators (Hoegh-Andersen et  al. 
2004). Additionally, OVX C3H/HeJ mice displayed an 
augmented OA phenotype compared to mice with intact 
ovaries (Sniekers et al. 2010). This difference could be due 
to the animal model used (iodoacetate-induced OA), i.e. 
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estrogen deprivation could be more detrimental in an OA 
model where a stronger pro-inflammatory component is 
used. Residues of phytoestrogens in the chow could also 
influence the results in OVX mice. Moreover, we cannot 
exclude the possibility that differences between sham and 
OVX mice with OA could be increased at a later time point 
of the OA disease progression.

In this study, OA mice showed increased lumbar spine 
aBMD compared to controls. A similar effect has been 
found in human subjects with knee OA. In these patients, 
knee OA with a low radiographic score was associated 
with increased BMD in the vertebrae. On the contrary, 
in OA patients with a high radiographic score, signs of 
osteoporosis were found in the vertebrae (Kim et al. 2018). 
In mice, the DMM, and consequently the destabilization 
of the whole joint, leads to alteration of the gait (Alves et al. 
2020). This could result in stress on the lumbar spine with 
an increased BMD as a consequence in this early phase of 
the disease progression.

Like in human OA, experimental models of OA 
also result in alterations of the subchondral bone. The 
subchondral bone has the important function to absorb 
mechanical shock, dynamically adjusting the orientation 
of the trabeculae, and to provide nutrients for the adjacent 
articular cartilage (Li et  al. 2013). Subchondral sclerosis 
and the presence of osteophytes are hallmarks for OA and 
result from a process of endochondral ossification. As a 
consequence of this fast turnover, the bone increases its 
volume without appropriate mineralization resulting in 
an increased bone volume and an osteoporotic BMD (Pauly 
et al. 2015, Goldring & Goldring 2016). Estrogens have been 
shown to regulate bone turnover directly by binding to ERs 
on osteoblasts and osteoclasts, and indirectly by regulating 
T cells in an inflammatory setting (Cenci et  al. 2000, 
Roggia et al. 2001, Khosla et al. 2012, Vanderschueren et al. 
2014). Removal of the ovaries and the resulting reduction 
of estrogen levels lead to osteoporosis of the cortical and 
trabecular subchondral bone. In OA, this worsens the 
condition of the articular cartilage. In our experimental 
model, estrogen replacement prevented OVX-induced loss 
of trabecular bone but did not affect the cortical bone. These 
results differ from the study by Sniekers and coworkers where 
an effect of estradiol was also shown on the subchondral 
cortical bone in mice with OA induced by iodoacetate 
(Sniekers et  al. 2008). The discordant results could be due 
to differences in the mouse strain, the OA model, or the 
higher E2 dose used by Sniekers and coworkers (12 µg/day 
by subcutaneously implanted pellets) (Sniekers et al. 2008).

In the last decades, new knowledge on OA shifted the 
paradigm of OA as a ‘wear and tear’ disease towards the 

recognition of an important inflammatory component 
that, although mild and localized around the damaged 
area, characterizes and drives the progression of the 
disease (Scanzello 2017, van den Bosch 2019). No signs of 
inflammation were detected in the peripheral blood of OA 
patients. Instead, infiltrated CD4+ T cells were found in 
the synovial membrane, at frequencies that increased with 
the severity of the disease (Moradi et al. 2014). CD8+ T cells 
were also increased in OA patients with higher radiographic 
grading (Apinun et al. 2016). In our experiment terminated 
after 2 weeks, OVX resulted in increased numbers of both 
CD4+ and CD8+ T cells in iLN, the lymph node draining 
the hind leg subjected to OA. Additionally, treatment of 
OVX mice with E2 for 8 weeks significantly decreased T 
cells in iLN, indicating a local anti-inflammatory effect 
induced by the long E2 treatment.

Pain in OA is caused by an inflammatory and a 
neurogenic component. In this study, the motor activity 
of OA mice was slightly decreased in the group subjected 
to OVX, an effect that was associated with increased 
pain sensitivity. The motor activity improved by E2 
replacement for 2 weeks, which was also associated with 
lower pain sensitivity of the OA paw. OVX has previously 
been associated with inactivity in mice and treatment 
with E2 stimulated movement and reduced hyperalgesia 
(Gorzek et al. 2007, Sanoja & Cervero 2008, Cabelka et al. 
2019, Chen et al. 2021). Interestingly, previous work shows 
that pain in mice subjected to the DMM model starts at 
4 weeks after the surgery and stays stable until the last 
time point analyzed at 16 weeks. However, in that study, 
neither female mice nor earlier time points were analyzed 
(Miller et al. 2012). A recent study by Hwang and colleagues 
shows that pain is detected by using the von Frey test 
starting 2 weeks after DMM surgery (Hwang et  al. 2021). 
The reduction of pain after E2 treatment for 2 weeks in 
this study could be a consequence of a faster resolution 
of a DMM surgery-related inflammatory component in 
the presence of E2 or could be due to the stimulation of 
ERs in the dorsal root ganglion, which is responsible for 
mediating the transmission of pain information to the 
brain (Mowa et al. 2003). Future experiments with a longer 
duration are warranted to evaluate differences in motor 
ability and pain behavior between the groups.

Conclusion

Our study demonstrates that the removal of ovarian 
hormones is not a trigger of the disease but instead a 
facilitator of the OA progression since both bone parameters 
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and T cell numbers are altered by OVX. Thus, in OVX 
mice, the diminished subchondral bone mineralization 
and mild immune activation limit the healing processes 
necessary for spontaneous cartilage regeneration and lead 
to worsening of the disease progression. In this study, we 
also clarified that a physiological dose of E2 administrated 
in a pulsed fashion improves OA symptoms.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
JOE-22-0032.
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