10,947 research outputs found

    Anomalous Chiral Action from the Path-Integral

    Get PDF
    By generalizing the Fujikawa approach, we show in the path-integral formalism: (1) how the infinitesimal variation of the fermion measure can be integrated to obtain the full anomalous chiral action; (2) how the action derived in this way can be identified as the Chern-Simons term in five dimensions, if the anomaly is consistent; (3) how the regularization can be carried out, so as to lead to the consistent anomaly and not to the covariant anomaly. Our method uses Schwinger's ``proper-time'' representation of the Green's function and the gauge invariant point-splitting technique. We find that the consistency requirement and the point-splitting technique allow both an anomalous and a non-anomalous action. In the end, the nature of the vacuum determines whether we have an anomalous theory, or, a non-anomalous theoryComment: 28 page

    Evolution of antiferromagnetic domains in the all-in-all-out ordered pyrochlore Nd2_2Zr2_2O7_7

    Get PDF
    We report the observation of magnetic domains in the exotic, antiferromagnetically ordered all-in-all-out state of Nd2_2Zr2_2O7_7, induced by spin canting. The all-in-all-out state can be realized by Ising-like spins on a pyrochlore lattice and is established in Nd2_2Zr2_2O7_7 below 0.31 K for external magnetic fields up to 0.14 T. Two different spin arrangements can fulfill this configuration which leads to the possibility of magnetic domains. The all-in-all-out domain structure can be controlled by an external magnetic field applied parallel to the [111] direction. This is a result of different spin canting mechanism for the two all-in-all-out configurations for such a direction of the magnetic field. The change of the domain structure is observed through a hysteresis in the magnetic susceptibility. No hysteresis occurs, however, in case the external magnetic field is applied along [100].Comment: Accepted for publication in Phys. Rev. B, 6 pages, 6 figure

    Isotope Effect in the Superfluid Density of HTS Cuprates: Stripes, Pseudogap and Impurities

    Full text link
    Underdoped cuprates exhibit a normal-state pseudogap, and their spins and doped carriers tend to spatially separate into 1- or 2-D stripes. Some view these as central to superconductivity, others as peripheral and merely competing. Using La2x_{2-x}Srx_xCu1y_{1-y}Zny_yO4_4 we show that an oxygen isotope effect in TcT_c and in the superfluid density can be used to distinguish between the roles of stripes and pseudogap and also to detect the presence of impurity scattering. We conclude that stripes and pseudogap are distinct, and both compete and coexist with superconductivity.Comment: Revised submission to PRL with added appendix on a possible isotope effect in the effective mass, 4 pages, 3 figure

    Evolutionary quantum cosmology in a gauge-fixed picture

    Full text link
    We study the classical and quantum models of a flat Friedmann-Robertson-Walker (FRW) space-time, coupled to a perfect fluid, in the context of the consensus and a gauge-fixed Lagrangian frameworks. It is shown that, either in the usual or in the gauge-fixed actions, the evolution of the universe based on the classical cosmology represents a late time power law expansion, coming from a big-bang singularity in which the scale factor goes to zero for the standard matter, and tending towards a big-rip singularity in which the scale factor diverges for the phantom fluid. We then employ the familiar canonical quantization procedure in the given cosmological setting to find the cosmological wave functions in the corresponding minisuperspace. Using a gauge-fixed (reduced) Lagrangian, we show that, it may lead to a Schr\"{o}dinger equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the time dependent wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.Comment: 15 pages, 10 figures, typos corrected, Refs. adde

    Magnetic field induced orientation of superconducting MgB2_2 crystallites determined by X-ray diffraction

    Get PDF
    X-ray diffraction studies of fine polycrystalline samples of MgB2_2 in the superconducting state reveal that crystals orient with their \emph{c}-axis in a plane normal to the direction of the applied magnetic field. The MgB2_2 samples were thoroughly ground to obtain average grain size 5 - 10 μ\mum in order to increase the population of free single crystal grains in the powder. By monitoring Bragg reflections in a plane normal to an applied magnetic field we find that the powder is textured with significantly stronger (\emph{0,0,l}) reflections in comparison to (\emph{h,k,0}), which remain essentially unchanged. The orientation of the crystals with the \emph{ab}-plane parallel to the magnetic field at all temperatures below TcT_c demonstrates that the sign of the torque under magnetic field does not alter, in disagreement with current theoretical predictions

    Rotated stripe order and its competition with superconductivity in La1.88_{1.88}Sr0.12_{0.12}CuO4_4

    Get PDF
    We report the observation of a bulk charge modulation in La1.88_{1.88}Sr0.12_{0.12}CuO4_4 (LSCO) with a characteristic in-plane wave-vector of (0.236, ±δ\pm \delta), with δ\delta=0.011 r.l.u. The transverse shift of the ordering wave-vector indicates the presence of rotated charge-stripe ordering, demonstrating that the charge ordering is not pinned to the Cu-O bond direction. On cooling through the superconducting transition, we find an abrupt change in the growth of the charge correlations and a suppression of the charge order parameter indicating competition between the two orderings. Orthorhombic LSCO thus helps bridge the apparent disparities between the behavior previously observed in the tetragonal "214" cuprates and the orthorhombic yttrium and bismuth-based cuprates and thus lends strong support to the idea that there is a common motif to charge order in all cuprate families.Comment: 6 pages, 4 figue

    Recent developments of MCViNE and its applications at SNS

    Get PDF
    MCViNE is an open source, object-oriented Monte Carlo neutron ray-tracing simulation software package. Its design allows for flexible, hierarchical representations of sophisticated instrument components such as detector systems, and samples with a variety of shapes and scattering kernels. Recently this flexible design has enabled several applications of MCViNE simulations at the Spallation Neutron Source (SNS) at Oak Ridge National Lab, including assisting design of neutron instruments at the second target station and design of novel sample environments, as well as studying effects of instrument resolution and multiple scattering. Here we provide an overview of the recent developments and new features of MCViNE since its initial introduction (Jiao et al 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 810, 86–99), and some example applications

    Antinociceptive, Anti-Inflammatory, and Antipyretic Activity of Mangrove Plants: A Mini Review

    Get PDF
    Mangrove plants are specialised plants that grow in the tidal coasts of tropic and subtropic regions of the world. Their unique ecology and traditional medicinal uses of mangrove plants have attracted the attention of researchers over the years, and as a result, reports on biological activity of mangrove plants have increased significantly in recent years. This review has been set out to compile and appraise the results on antinociceptive, anti-inflammatory, and antipyretic activity of mangrove plants. While the Web of Knowledge, Google Scholar, and PubMed were the starting points to gather information, other pieces of relevant published literature were also adequately explored for this purpose. A total of 29 reports on 17 plant species have been found to report such activities. While 19 reports were on the biological activity of the crude extracts, 10 reports identified the active compound(s) of various chemical classes of natural products including terpenes, steroids, and flavonoids. This review finds that antinociceptive, anti-inflammatory, and antipyretic activity appears to be widespread in mangrove plants

    Quantum limits to center-of-mass measurements

    Get PDF
    We discuss the issue of measuring the mean position (center-of-mass) of a group of bosonic or fermionic quantum particles, including particle number fluctuations. We introduce a standard quantum limit for these measurements at ultra-low temperatures, and discuss this limit in the context of both photons and ultra-cold atoms. In the case of fermions, we present evidence that the Pauli exclusion principle has a strongly beneficial effect, giving rise to a 1/N scaling in the position standard-deviation -- as opposed to a 1/N1/\sqrt{N} scaling for bosons. The difference between the actual mean-position fluctuation and this limit is evidence for quantum wave-packet spreading in the center-of-mass. This macroscopic quantum effect cannot be readily observed for non-interacting particles, due to classical pulse broadening. For this reason, we also study the evolution of photonic and matter-wave solitons, where classical dispersion is suppressed. In the photonic case, we show that the intrinsic quantum diffusion of the mean position can contribute significantly to uncertainties in soliton pulse arrival times. We also discuss ways in which the relatively long lifetimes of attractive bosons in matter-wave solitons may be used to demonstrate quantum interference between massive objects composed of thousands of particles.Comment: 12 pages, 6 figures. Submitted to PRA. Revised to include more references as well as a discussion of fermionic center-of-mas
    corecore