28 research outputs found

    Failure of a Rigidly Framed Concrete Parking Structure Due to Thermally Induced Earth Pressure

    Get PDF
    An instrumentation program was undertaken to monitor the movements of a multi-story underground parking-structure exhibiting signs of large deformation and severe structural distress including the failure of a column. The structure is a four-story reinforced concrete building with a rectangular footprint measuring 52.42 m by 71.32 m. The building’s structural system consists of reinforced concrete waffle slabs supported by rectangular reinforced-concrete columns. The instrumentation plan included the installation of eight vibrating-wire displacement transducers to monitor displacements, and twenty-four electrolytic tiltmeters to monitor inclinations. The instrument data was recorded hourly and read via a remote site modem connected to a datalogger for three years. Measurements indicate that earth pressure against rigidly framed structures, subject to wide temperature variations, is largely dependent on seasonal variation of temperature and the structural stiffness of the building. A summary of the instrumentation program and a brief interpretation of typical measurements are presented, along with a discussion of lessons learned and recommendations for similar projects

    Axial Load Capacity of Piles in Sand

    Get PDF
    The axial load capacity of individual piles in cohesionless soils can be estimated at design time using a variety of methods. Because of the difficulties in modeling the process of pile driving, set-up, and loading of piles, useful methods are based on case histories a load tests. Perhaps the most common approach in current use is to specify a soil/pile friction angle, an earth pressure coefficient, a tip bearing capacity factor, and appropriate limits on side shear and end bearing. The various parameters may be made functions of soil classification, relative density, depth, or whatever other variables the investigator thinks are important. In this paper, we compare several methods of analysis that have been in wide use, as well as a method based on continuous functions and a newer method developed by Jardine and coworkers, with measured capacities for untapered piles in tension and compression, in cohesion less soils, and try to draw conclusions about the relative merits of the methods

    A COMPARISON OF HALF AND QUARTER SPACE PENETRATION INTO GRANULAR MEDIA

    Full text link
    In this study, two experimental techniques are compared for the purpose of visualizing projectile penetration at speeds ranging between 60 and 150 m/s into granular media. The two techniques are half space penetration into a transparent synthetic soil surrogate and quarter space penetration of an opaque natural sand and transparent soil surrogate against an observation window. In both techniques a pneumatic projectile accelerator was employed to launch the projectiles, and high-speed imagery was employed to visualize the penetration events unintrusively. Transparency in transparent targets was achieved by saturating angular fused quartz with a refractive index matched pore fluid made of sucrose. Comparison of both techniques suggests that their results are complimentary. In particular, the terminal depth of penetration is not significantly inhibited by shooting in quarter space. Additionally, both techniques permitted visualizing distinct dilation zones ahead and around penetration. Each technique offers a number of distinct advantages. In particular, half space penetration reduces the possibility of projectile diversion and is much safer, whereas quarter space penetration allows for visualizing penetration into opaque targets at a finer scale than that achieved in half space penetration

    Liquefaction Susceptibility: Proposed New York City Building Code Revision

    Get PDF
    A simplified procedure is presented for evaluating liquefaction susceptibility of cohesionless saturated soils based on available technology. In 2001, a Committee of engineers working in the New York City (NYC) area was formed under the direction of the first Author, to review the liquefaction aspects of the 1995 New York City Building Code. The purpose was to gain consensus on a possible revision and augmentation of the exisiting regulations as part of the ongoing Code review by the Structural Engineers Association of New York (SEAoNY). This article summarizes the recommendations of the Committee, as compiled in 2002. The following topics are reviewed: (a) history of the current code; (b) seismicity and design motions in NYC; (c) updated screening criteria for liquefaction susceptibility. With reference to the topic in (c), recommendations are developed for Code language pertaining to: (1) method of analysis; (2) site classification schemes; (3) design considerations for bearing capacity and displacements of foundations in liquefied soil; (4) maximum depth of liquefaction; (5) field methods to evaluate soil resistance; (6) parameters to be considered in analyses; (7) treatment of sloped strata. Analytical results for typical NYC profiles subjected to 500-year rock motions are presented. Based on the these results, the Committee proposed a revised liquefaction screening diagram

    Rigidly framed earth retaining structures: thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    No full text
    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories. Additionally, a nearly perpetual lateral displacement away from the retained soil mass may occur at the free end of the RFERS leading to unacceptable serviceability problems.  These results suggest that reinforced concrete structures designed for the flexural stresses imposed by the backfill soil will be inadequately reinforced to resist stresses produced during the expansion cycles. Parametric studies of single and multi-story RFERS with varying geometries and properties are also presented to investigate the effects of structural stiffness on the displacement of RFERS and the lateral earth pressure developed in the soil mass. These studies can aid the reader in selecting appropriate values of lateral earth pressure for the design of RFERS. Finally, simplified closed form equations that can be used to predict the lateral drift of RFERS are presented.   KEY WORDS:  Earth Pressure; Soil-Structure Interaction; Mechanics; Failure; Distress; Temperature; Thermal Effects; Concrete; Coefficient of Thermal Expansion; Segmental Bridges; Jointless Bridges; Integral Bridges; Geotechnical Instrumentation; Finite Element Modeling; FEM; Numerical Modelin

    Insights into Plugging of Pipe Piles Based on Pile Dimensions

    No full text
    Preliminary identification of plugging of open-ended pipe piles based on their dimensions, ahead of driving, is explored in this study using data analytics. Piles can be unplugged, plugged, or internally plugged, depending on their dimensions, and geotechnical conditions. Plugging of pipe piles influences both pile capacity and driving behavior; however, the classification assumed at the design time does not always manifest during driving, sometimes resulting in driving difficulties. The relationship between pile plugging and pile dimensions was investigated using a dataset of 74 load tests on pipe piles, where geotechnical profiles were also available. An analytics approach borrowed from data science was adopted. First, capacity was computed using four recognized designed methods considering the unplugged, plugged, and internally plugged conditions. Next, the calculated capacities were compared to capacities measured (interpreted) from static load tests. Finally, voting was employed to identify plugging based on the closeness of the computed capacity assumptions to the interpreted capacity. Most piles were found to be unplugged. A diameter criterion is proposed as a tool to give early insight into the plugging condition of a pile ahead of driving which resulted in a 70 ± 10% accuracy. The proposed criterion was validated once using a dataset of 23 piles with CPT data and a second time using 24 published driving records where plugging records were available and achieved similar accuracy, in both cases. It was concluded that piles larger than ~0.9 m (36 inches) in diameter have a higher likelihood of being unplugged, while piles smaller than 0.5 m (20 inches) have a higher likelihood of being plugged

    Insights into Plugging of Pipe Piles Based on Pile Dimensions

    No full text
    Preliminary identification of plugging of open-ended pipe piles based on their dimensions, ahead of driving, is explored in this study using data analytics. Piles can be unplugged, plugged, or internally plugged, depending on their dimensions, and geotechnical conditions. Plugging of pipe piles influences both pile capacity and driving behavior; however, the classification assumed at the design time does not always manifest during driving, sometimes resulting in driving difficulties. The relationship between pile plugging and pile dimensions was investigated using a dataset of 74 load tests on pipe piles, where geotechnical profiles were also available. An analytics approach borrowed from data science was adopted. First, capacity was computed using four recognized designed methods considering the unplugged, plugged, and internally plugged conditions. Next, the calculated capacities were compared to capacities measured (interpreted) from static load tests. Finally, voting was employed to identify plugging based on the closeness of the computed capacity assumptions to the interpreted capacity. Most piles were found to be unplugged. A diameter criterion is proposed as a tool to give early insight into the plugging condition of a pile ahead of driving which resulted in a 70 ± 10% accuracy. The proposed criterion was validated once using a dataset of 23 piles with CPT data and a second time using 24 published driving records where plugging records were available and achieved similar accuracy, in both cases. It was concluded that piles larger than ~0.9 m (36 inches) in diameter have a higher likelihood of being unplugged, while piles smaller than 0.5 m (20 inches) have a higher likelihood of being plugged

    Innovative Techniques in Instruction Technology, E-learning, E-assessment, and Education

    Get PDF
    Uma Balaji is a contributing author, Demonstrations of Transmission Line Effects. Book description: Innovative Techniques in Instruction Technology, E-Learning, E-Assessment and Education is a collection of world-class paper articles addressing the following topics: E-Learning including development of courses and systems for technical and liberal studies programs; online laboratories; intelligent testing using fuzzy logic; evaluation of on line courses in comparison to traditional courses; mediation in virtual environments; and methods for speaker verification. Instruction Technology including internet textbooks; pedagogy-oriented markup languages; graphic design possibilities; open source classroom management software; automatic email response systems; tablet-pcs; personalization using web mining technology; intelligent digital chalkboards; virtual room concepts for cooperative scientific work; and network technologies, management, and architecture. Science and Engineering Research Assessment Methods including assessment of K-12 and university level programs; adaptive assessments; auto assessments; assessment of virtual environments and e-learning. Engineering and Technical Education including cap stone and case study course design; virtual laboratories; bioinformatics; robotics; metallurgy; building information modeling; statistical mechanics; thermodynamics; information technology; occupational stress and stress prevention; web enhanced courses; and promoting engineering careers. Pedagogy including benchmarking; group-learning; active learning; teaching of multiple subjects together; ontology; and knowledge representation. Issues in K-12 Education including 3D virtual learning environment for children; e-learning tools for children; game playing and systems thinking; and tools to learn how to write foreign languages.https://digitalcommons.fairfield.edu/engineering-books/1034/thumbnail.jp

    Effect of Geometric Parameters and Construction Sequence on Ground Settlement of Offset Arrangement Twin Tunnels

    No full text
    A parametric study that examines the ground surface settlement due to the excavation of shallow offset arrangement twin tunnels is presented. Offset arrangement tunnels are those that run parallel to each other, but at different elevations. The study focuses on the influence of both the construction sequence and various geometric parameters on the induced soil settlement. A series of three-dimensional finite element analyses was carried out to investigate the settlement behavior and interactions between offset arrangement twin tunnels excavated in clay using a simplified mechanized excavation method. Analyses were carried out for three cover-to-diameter (C/D) ratios, three possible construction sequences, five angular relative positions, and five angular spacings. In addition, settlement data were also investigated by varying horizontal and vertical spacings while keeping the angular spacing constant. The total settlement of the excavated twin tunnels and the settlement induced solely by the new second tunnel are both presented, and special attention was paid to identifying the dominant geometric parameters. The observed data trends from this study are generally consistent with the limited data available in the literature. This study confirmed a few perceived behaviors. First, angular relative position better describes the settlement behavior in comparison to angular spacing. Second, the effect of the vertical distance is noticeably more significant than that of the horizontal distance between the two tunnels. Third, excavation of the lower tunnel at first induces higher total ground settlement than when the upper tunnel is excavated first or when both tunnels are excavated concurrently. Fourth, settlement due to the construction of the newer tunnel decreases with the increase in the cover depth. In addition, two design charts have been proposed to calculate the settlement induced from a new second tunnel excavation and the eccentricity of the maximum total settlement relative to the center of the new tunnel

    Effect of Geometric Parameters and Construction Sequence on Ground Settlement of Offset Arrangement Twin Tunnels

    No full text
    A parametric study that examines the ground surface settlement due to the excavation of shallow offset arrangement twin tunnels is presented. Offset arrangement tunnels are those that run parallel to each other, but at different elevations. The study focuses on the influence of both the construction sequence and various geometric parameters on the induced soil settlement. A series of three-dimensional finite element analyses was carried out to investigate the settlement behavior and interactions between offset arrangement twin tunnels excavated in clay using a simplified mechanized excavation method. Analyses were carried out for three cover-to-diameter (C/D) ratios, three possible construction sequences, five angular relative positions, and five angular spacings. In addition, settlement data were also investigated by varying horizontal and vertical spacings while keeping the angular spacing constant. The total settlement of the excavated twin tunnels and the settlement induced solely by the new second tunnel are both presented, and special attention was paid to identifying the dominant geometric parameters. The observed data trends from this study are generally consistent with the limited data available in the literature. This study confirmed a few perceived behaviors. First, angular relative position better describes the settlement behavior in comparison to angular spacing. Second, the effect of the vertical distance is noticeably more significant than that of the horizontal distance between the two tunnels. Third, excavation of the lower tunnel at first induces higher total ground settlement than when the upper tunnel is excavated first or when both tunnels are excavated concurrently. Fourth, settlement due to the construction of the newer tunnel decreases with the increase in the cover depth. In addition, two design charts have been proposed to calculate the settlement induced from a new second tunnel excavation and the eccentricity of the maximum total settlement relative to the center of the new tunnel
    corecore