113 research outputs found

    Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification

    Get PDF
    Wybutosine (yW) is a hypermodified nucleoside found in position 37 of tRNAPhe, and is essential for correct phenylalanine codon translation. yW derivatives widely exist in eukaryotes and archaea, and their chemical structures have many species-specific variations. Among them, its hydroxylated derivative, hydroxywybutosine (OHyW), is found in eukaryotes including human, but the modification mechanism remains unknown. Recently, we identified a novel Jumonji C (JmjC)-domain-containing protein, TYW5 (tRNA yW-synthesizing enzyme 5), which forms the OHyW nucleoside by carbon hydroxylation, using Fe(II) ion and 2-oxoglutarate (2-OG) as cofactors. In this work, we present the crystal structures of human TYW5 (hTYW5) in the free and complex forms with 2-OG and Ni(II) ion at 2.5 and 2.8ā€‰Ć… resolutions, respectively. The structure revealed that the catalytic domain consists of a Ī²-jellyroll fold, a hallmark of the JmjC domains and other Fe(II)/2-OG oxygenases. hTYW5 forms a homodimer through C-terminal helix bundle formation, thereby presenting a large, positively charged patch involved in tRNA binding. A comparison with the structures of other JmjC-domain-containing proteins suggested a mechanism for substrate nucleotide recognition. Functional analyses of structure-based mutants revealed the essential Arg residues participating in tRNA recognition by TYW5. These findings extend the repertoire of the tRNA modification enzyme into the Fe(II)/2-OG oxygenase superfamily

    Structural basis for translation termination by archaeal RF1 and GTP-bound EF1 complex

    Get PDF
    ABSTRACT When a stop codon appears at the ribosomal A site, the class I and II release factors (RFs) terminate translation. In eukaryotes and archaea, the class I and II RFs form a heterodimeric complex, and complete the overall translation termination process in a GTP-dependent manner. However, the structural mechanism of the translation termination by the class I and II RF complex remains unresolved. In archaea, archaeal elongation factor 1 alpha (aEF1a), a carrier GTPase for tRNA, acts as a class II RF by forming a heterodimeric complex with archaeal RF1 (aRF1). We report the crystal structure of the aRF1 Ā· aEF1a complex, the first active class I and II RF complex. This structure remarkably resembles the tRNA Ā· EF-Tu complex, suggesting that aRF1 is efficiently delivered to the ribosomal A site, by mimicking tRNA. It provides insights into the mechanism that couples GTP hydrolysis by the class II RF to stop codon recognition and peptidyltRNA hydrolysis by the class I RF. We discuss the different mechanisms by which aEF1a recognizes aRF1 and aPelota, another aRF1-related protein and molecular evolution of the three functions of aEF1a

    The Non-Canonical Hydroxylase Structure of YfcM Reveals a Metal Ion-Coordination Motif Required for EF-P Hydroxylation

    Get PDF
    EF-P is a bacterial tRNA-mimic protein, which accelerates the ribosome-catalyzed polymerization of poly-prolines. In Escherichia coli, EF-P is post-translationally modified on a conserved lysine residue. The post-translational modification is performed in a two-step reaction involving the addition of a Ī²-lysine moiety and the subsequent hydroxylation, catalyzed by PoxA and YfcM, respectively. The Ī²-lysine moiety was previously shown to enhance the rate of poly-proline synthesis, but the role of the hydroxylation is poorly understood. We solved the crystal structure of YfcM and performed functional analyses to determine the hydroxylation mechanism. In addition, YfcM appears to be structurally distinct from any other hydroxylase structures reported so far. The structure of YfcM is similar to that of the ribonuclease YbeY, even though they do not share sequence homology. Furthermore, YfcM has a metal ion-coordinating motif, similar to YbeY. The metal ion-coordinating motif of YfcM resembles a 2-His-1-carboxylate motif, which coordinates an Fe(II) ion and forms the catalytic site of non-heme iron enzymes. Our findings showed that the metal ion-coordinating motif of YfcM plays an essential role in the hydroxylation of the Ī²-lysylated lysine residue of EF-P. Taken together, our results suggested the potential catalytic mechanism of hydroxylation by YfcM

    Structural and functional insights into IZUMO1 recognition by JUNO in mammalian fertilization

    Get PDF
    Kato, K., Satouh, Y., Nishimasu, H. et al. Structural and functional insights into IZUMO1 recognition by JUNO in mammalian fertilization. Nat Commun 7, 12198 (2016). https://doi.org/10.1038/ncomms1219

    Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA

    Get PDF
    The CRISPR-associated endonuclease Cas9 can be targeted to specific genomic loci by single guide RNAs (sgRNAs). Here, we report the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA at 2.5 ƅ resolution. The structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface. Whereas the recognition lobe is essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and noncomplementary strands of the target DNA, respectively. The nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM). This high-resolution structure and accompanying functional analyses have revealed the molecular mechanism of RNA-guided DNA targeting by Cas9, thus paving the way for the rational design of new, versatile genome-editing technologies.National Institutes of Health (U.S.) (Grant 5DP1-MH100706

    Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases

    Get PDF
    Yeast mitochondrial Gln-mtRNAGln is synthesized by the transamidation of mischarged Glu-mtRNAGln by a non-canonical heterotrimeric tRNA-dependent amidotransferase (AdT). The GatA and GatB subunits of the yeast AdT (GatFAB) are well conserved among bacteria and eukaryota, but the GatF subunit is a fungi-specific ortholog of the GatC subunit found in all other known heterotrimeric AdTs (GatCAB). Here we report the crystal structure of yeast mitochondrial GatFAB at 2.0 ƅ resolution. The C-terminal region of GatF encircles the GatA-GatB interface in the same manner as GatC, but the N-terminal extension domain (NTD) of GatF forms several additional hydrophobic and hydrophilic interactions with GatA. NTD-deletion mutants displayed growth defects, but retained the ability to respire. Truncation of the NTD in purified mutants reduced glutaminase and transamidase activities when glutamine was used as the ammonia donor, but increased transamidase activity relative to the full-length enzyme when the donor was ammonium chloride. Our structure-based functional analyses suggest the NTD is a trans-acting scaffolding peptide for the GatA glutaminase active site. The positive surface charge and novel fold of the GatF-GatA interface, shown in this first crystal structure of an organellar AdT, stand in contrast with the more conventional, negatively charged bacterial AdTs described previousl

    Crystal Structure of Staphylococcus aureus Cas9

    Get PDF
    Summary The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets with a protospacer adjacent mot if (PAM) and complementarity to the guide RNA. Recently, we harnessed Staphylococcus aureus Cas9 (SaCas9), which is significantly smaller than Streptococcus pyogenes Cas9 (SpCas9), to facilitate efficient in vivo genome editing. Here, we report the crystal structures of SaCas9 in complex with a single guide RNA (sgRNA) and its double-stranded DNA targets, containing the 5ā€²-TTGAAT-3ā€² PAM and the 5ā€²-TTGGGT-3ā€² PAM, at 2.6 and 2.7 ƅ resolutions, respectively. The structures revealed the mechanism of the relaxed recognition of the 5ā€²-NNGRRT-3ā€² PAM by SaCas9. A structural comparison of SaCas9 with SpCas9 highlighted both structural conservation and divergence, explaining their distinct PAM specificities and orthologous sgRNA recognition. Finally, we applied the structural information about this minimal Cas9 to rationally design compact transcriptional activators and inducible nucleases, to further expand the CRISPR-Cas9 genome editing toolbox.National Institute of General Medical Sciences (U.S.) (Grant T32GM007753)National Institutes of Health (U.S.) (Award 1DP1-MH100706

    Crystal Structure and Activity of the Endoribonuclease Domain of the piRNA Pathway Factor Maelstrom

    Get PDF
    SummaryPIWI-interacting RNAs (piRNAs) protect the genome from transposons in animal gonads. Maelstrom (Mael) is an evolutionarily conserved protein, composed of a high-mobility group (HMG) domain and a MAEL domain, and is essential for piRNA-mediated transcriptional transposon silencing in various species, such as Drosophila and mice. However, its structure and biochemical function have remained elusive. Here, we report the crystal structure of the MAEL domain from Drosophila melanogaster Mael, at 1.6Ā Ć… resolution. The structure reveals that the MAEL domain has an RNase H-like fold but lacks canonical catalytic residues conserved among RNase H-like superfamily nucleases. Our biochemical analyses reveal that the MAEL domain exhibits single-stranded RNA (ssRNA)-specific endonuclease activity. Our cell-based analyses further indicate that ssRNA cleavage activity appears dispensable for piRNA-mediated transcriptional transposon silencing in Drosophila. Our findings provide clues toward understanding the multiple roles of Mael in the piRNA pathway

    Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems

    Get PDF
    The RNA-guided endonuclease Cas9 generates a double-strand break at DNA target sites complementary to the guide RNA and has been harnessed for the development of a variety of new technologies, such as genome editing. Here, we report the crystal structures of Campylobacter jejuni Cas9 (CjCas9), one of the smallest Cas9 orthologs, in complex with an sgRNA and its target DNA. The structures provided insights into a minimal Cas9 scaffold and revealed the remarkable mechanistic diversity of the CRISPR-Cas9 systems. The CjCas9 guide RNA contains a triple-helix structure, which is distinct from known RNA triple helices, thereby expanding the natural repertoire of RNA triple helices. Furthermore, unlike the other Cas9 orthologs, CjCas9 contacts the nucleotide sequences in both the target and non-target DNA strands and recognizes the 5ā€²-NNNVRYM-3ā€² as the protospacer-adjacent motif. Collectively, these findings improve our mechanistic understanding of the CRISPR-Cas9 systems and may facilitate Cas9 engineering. Keywords: CRISPR-Cas system; Cas9; protospacer adjacent motif; RNA triplex; crystal structureUnited States. Department of Energy (Grant DE-FG02-97ER25308)National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049

    Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation

    Get PDF
    The micronutrient selenium is present in proteins as selenocysteine (Sec). In eukaryotes and archaea, Sec is formed in a tRNA-dependent conversion of O-phosphoserine (Sep) by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS). Here, we present the crystal structure of Methanococcus maripaludis SepSecS complexed with PLP at 2.5 ƅ resolution. SepSecS, a member of the Fold Type I PLP enzyme family, forms an (Ī±2)2 homotetramer through its N-terminal extension. The active site lies on the dimer interface with each monomer contributing essential residues. In contrast to other Fold Type I PLP enzymes, Asn247 in SepSecS replaces the conserved Asp in binding the pyridinium nitrogen of PLP. A structural comparison with Escherichia coli selenocysteine lyase allowed construction of a model of Sep binding to the SepSecS catalytic site. Mutations of three conserved active site arginines (Arg72, Arg94, Arg307), protruding from the neighboring subunit, led to loss of in vivo and in vitro activity. The lack of active site cysteines demonstrates that a perselenide is not involved in SepSecS-catalyzed Sec formation; instead, the conserved arginines may facilitate the selenation reaction. Structural phylogeny shows that SepSecS evolved early in the history of PLP enzymes, and indicates that tRNA-dependent Sec formation is a primordial process
    • ā€¦
    corecore