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SUMMARY

PIWI-interacting RNAs (piRNAs) protect the genome
from transposons in animal gonads. Maelstrom
(Mael) is an evolutionarily conserved protein, com-
posed of a high-mobility group (HMG) domain and a
MAEL domain, and is essential for piRNA-mediated
transcriptional transposon silencing in various spe-
cies, such as Drosophila and mice. However, its
structure and biochemical function have remained
elusive. Here, we report the crystal structure of the
MAEL domain from Drosophila melanogaster Mael,
at 1.6 Å resolution. The structure reveals that the
MAEL domain has an RNase H-like fold but lacks ca-
nonical catalytic residues conserved among RNase
H-like superfamily nucleases. Our biochemical ana-
lyses reveal that the MAEL domain exhibits single-
stranded RNA (ssRNA)-specific endonuclease activ-
ity. Our cell-based analyses further indicate that
ssRNA cleavage activity appears dispensable for
piRNA-mediated transcriptional transposon silencing
in Drosophila. Our findings provide clues toward un-
derstanding the multiple roles of Mael in the piRNA
pathway.

INTRODUCTION

Small RNA-based defense systems repress the aberrant expres-

sion of transposable elements (TEs) and thus maintain genome

integrity in animal gonads (Malone and Hannon, 2009; Siomi

et al., 2011). The germline-specific PIWI clade of Argonaute fam-

ily proteins and the 23- to 30-nt noncoding PIWI-interacting

RNAs (piRNAs) are the core of this defense system. PIWI pro-

teins bind piRNAs to form piRNA-induced silencing complexes

(piRISCs), which silence their complementary target TEs at the

transcriptional or posttranscriptional level (Malone and Hannon,

2009; Siomi et al., 2011; Ishizu et al., 2012; Luteijn and Ketting,
366 Cell Reports 11, 366–375, April 21, 2015 ª2015 The Authors
2013). The Drosophila genome encodes three PIWI proteins:

Piwi, Aubergine (Aub), and Argonaute3 (AGO3). The Drosophila

ovary consists of two types of cells, somatic cells such as follicle

cells, and germ cells such as nurse cells and oocytes. Piwi is

localized in the nucleus in both somatic and germ cells, where

it participates in the primary piRNA pathway (Czech et al.,

2013; Handler et al., 2013; Olivieri et al., 2010). In contrast, Aub

and AGO3 are enriched in cytoplasmic perinuclear granules

called nuage in germ cells, where they participate in secondary

piRNA biogenesis (Brennecke et al., 2007; Gunawardane et al.,

2007; Li et al., 2009; Malone et al., 2009). In the primary piRNA

pathway in Drosophila ovarian somatic cells, single-stranded,

long piRNA precursors are transcribed from discrete genomic

loci, called piRNA clusters, and are processed into mature piR-

NAs by the single-strand-specific endoribonuclease Zucchini

(Zuc) (Ipsaro et al., 2012; Nishimasu et al., 2012). The primary

piRNAs are loaded into Piwi at cytoplasmic perinuclear Yb

bodies (Saito et al., 2010). piRISC then enters the nucleus

and promotes repressive histone H3 lysine 9 trimethylation

(H3K9me3), thereby silencing target TEs at the transcriptional

level (Sienski et al., 2012; Wang and Elgin, 2011; Le Thomas

et al., 2013; Rozhkov et al., 2013). In the secondary piRNA

biogenesis pathway, Aub and AGO3 reciprocally cleave sense

and antisense TE transcripts, respectively (Brennecke et al.,

2007; Gunawardane et al., 2007). This feed-forward piRNA

amplification loop, called the ping-pong cycle, enables simulta-

neous secondary piRNA biogenesis and TE silencing.

Maelstrom (Mael) is an evolutionarily conserved protein impli-

cated in the piRNA pathway (Lim and Kai, 2007; Soper et al.,

2008; Aravin et al., 2009; Sienski et al., 2012; Castañeda et al.,

2014). In somatic cells of the fly ovary, Mael is predominantly

localized in the nucleus (Sienski et al., 2012). In contrast, in

germ cells of the fly ovary and mouse testis, Mael is localized

in both the nucleus and cytoplasmic granules (nuage in flies,

piP-bodies or chromatoid bodies in mice) (Findley et al., 2003;

Costa et al., 2006; Lim and Kai, 2007; Soper et al., 2008; Aravin

et al., 2009; Sato et al., 2011; Castañeda et al., 2014). Mael is

also implicated in various biological processes, such as oocyte

development and germline stem cell (GSC) differentiation (Clegg
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et al., 1997, 2001; Pek et al., 2009, 2012; Sato et al., 2011).

Mael is composed of an N-terminal HMG domain and a central

MAEL domain, which was predicted to adopt an RNase H-like

fold by a bioinformatics analysis (Zhang et al., 2008) (Figures

1A and S1). However, the biochemical function of Mael remains

elusive.

In cultured Drosophila ovarian somatic cells (OSCs) (Niki et al.,

2006; Saito et al., 2009), mael knockdown (KD) did not affect

piRNA biogenesis but resulted in the derepression of TEs, indi-

cating that Mael is essential for Piwi-mediated TE silencing

(Sienski et al., 2012). Intriguingly, mael KD only modestly

impacted the H3K9me3 patterns at the target heterochromatic

loci, suggesting that Mael acts downstream of or in parallel to

the Piwi-mediated H3K9me3 modification (Sienski et al., 2012).

In addition, Mael has been implicated in piRNA biogenesis in

germ cells of the fly ovary and mouse testis (Lim and Kai,

2007; Sienski et al., 2012; Aravin et al., 2009; Castañeda et al.,

2014). Despite the crucial role of Mael in the piRNA pathway,

the molecular mechanism of Mael/Piwi-mediated TE silencing

remains elusive, due to the lack of structural and biochemical

information.

In this study, we solved the crystal structure of the MAEL

domain of D. melanogaster Mael. The structure revealed that

the MAEL domain adopts an RNase H-like fold but lacks the ca-

nonical catalytic residues conserved among the RNase H-like

superfamily of endonucleases and exonucleases. Moreover,

our biochemical and biological analyses revealed that the

MAEL domain has single-stranded RNA (ssRNA) cleavage activ-

ity, which appears dispensable for Mael/Piwi-mediated tran-

scriptional TE silencing inDrosophilaOSCs. Our findings provide

clues toward understanding the multiple functions of Mael in the

piRNA pathway.

RESULTS

Crystal Structure of the MAEL Domain from
D. melanogaster Mael
To gain mechanistic insights into the function of Mael, we

attempted to determine the crystal structure of full-length

D. melanogaster Mael (residues 1–459, referred to as FL-

DmMael) but were hampered by its low expression levels in

Escherichia coli. Limited trypsin proteolysis of FL-DmMael re-

vealed that the MAEL domain (residues 84–333, referred to as

DmMAEL) is a well-expressed, stable region suitable for struc-

tural analysis (Figure 1A). Furthermore, we found that the substi-

tution of a less-conserved cysteine residue (Cys228) with serine

dramatically improved the diffraction quality. X-ray fluorescence

spectra of the crystal indicated that DmMAEL binds a zinc ion,

consistent with a previous bioinformatics analysis suggesting

that a zinc ion is coordinated by the ECHC motif, which is

conserved among Mael orthologs (Zhang et al., 2008) (Figures

S1 and S2). We determined the crystal structure of DmMAEL

(C228S) at 1.6 Å resolution by the single-wavelength anomalous

diffraction (SAD)method, using the intrinsic zinc atom (Figure 1B;

Table S1). The structure revealed that DmMAEL consists of a

twisted five-stranded mixed b sheet surrounded by 13 helices,

with a zinc ion coordinated by Glu131, Cys288, His291, and

Cys300 in the ECHC motif (Figure 1C).
A Dali search (Holm and Rosenström, 2010) revealed that

DmMAEL shares structural similarity with the RNase H-like su-

perfamily of endonucleases and exonucleases (Majorek et al.,

2014), especially with the DEDDh family exonucleases, such as

a Lassa virus nucleoprotein (LASV NP) (PDB 4GV9) (Jiang

et al., 2013). LASV NP is a 30–50 exonuclease involved in the

suppression of virus-induced interferon production (Martı́nez-

Sobrido et al., 2007; Qi et al., 2010; Hastie et al., 2011; Jiang

et al., 2013). Despite their low sequence identity (�13%),

DmMAEL shares an RNase H-like fold, consisting of a five-

stranded b sheet flanked by a helices on both sides, with LASV

NP (Jiang et al., 2013) (root mean square deviation of 2.9 Å for

131 aligned Ca atoms) (Figure 1D). Like DmMAEL, LASVNP con-

tains a zinc ion coordinated by the ECHC motif, consisting of

Glu399, Cys506, His509, and Cys529, which may contribute to

structural stabilization or substrate binding (Qi et al., 2010; Has-

tie et al., 2011) (Figures 1E and S3A). In DmMAEL, the bound zinc

ionmay play at least a structural role, since pointmutations of the

ECHCmotif drastically reduced the solubility of DmMAEL in vitro

(data not shown). The DEDDh family exonucleases have a nega-

tively charged catalytic groove formed by five invariant catalytic

residues (Asp, Glu, Asp, Asp, and His; DEDDh motif) and

cleave double-stranded RNAs (dsRNAs) through a two-metal-

ion mechanism (Zuo and Deutscher, 2001). In LASV NP, the cat-

alytic groove is formed by Asp389, Glu391, Asp466, Asp533,

and His528 in the DEDDh motif and the highly conserved

Ser430, Gln462, and Arg492 residues (Hastie et al., 2012; Jiang

et al., 2013) (Figures 1F and S3B). The Asp389, Glu391, Asp466,

Asp533, and His528 residues of LASV NP respectively corre-

spond to the Ala114, Asn116, Met218, Met304, and Tyr299

residues of DmMAEL (Figures 1F and S3B). Consequently, the

central groove of DmMAEL, which corresponds to the catalytic

groove of LASV NP, is not negatively charged (Figure 1G). In

addition, the residues in the central groove are not conserved

among Mael orthologs (Figures S1 and S2), suggesting that the

central groove is less important for the function of Mael. Taken

together, the crystal structure of DmMAEL revealed that it

adopts an RNase H-like fold but lacks the canonical catalytic

residues conserved among RNase H-like superfamily members.

The MAEL Domain Has Single-Strand-Specific
Endoribonuclease Activity
To determine whether DmMAEL is a nuclease, we measured

the nuclease activity of purified DmMAEL using a 50 32P-labeled
40-nt ssRNA (40AS ssRNA) as the substrate. Unexpectedly,

DmMAEL cleaved the 40AS ssRNA (Figure 2A). The elution

profile of purified DmMAEL correlated closely with that of the

single-stranded ribonuclease (ssRNase) activity in gel-filtration

chromatography (Figure 2A). Furthermore, DmMAEL cleaved

the 40AS ssRNA in a dose- and time-dependent manner (Figures

2B and 2C). These results revealed that DmMAEL is a ssRNase.

The ssRNase activity of DmMAEL did not require divalent metal

ions, such as Mg2+ or Ca2+, and was rather inhibited in their

presence (Figure 2D). These results are consistent with our

structural finding that DmMAEL shares no catalytic residues

with the DEDDh family members, which require divalent metal

ions, such as Mg2+ and Mn2+, for substrate cleavage (Zuo and

Deutscher, 2001). To determine the substrate specificity of
Cell Reports 11, 366–375, April 21, 2015 ª2015 The Authors 367



A C

E F

G

DmMAEL

1 71 84 333 459

HMG MAEL

B

D

Cys288

Cys300

Glu131

His291

α1

β1 β2

β3

β4β5

α2

η1 η4

η3

α7

α6

η2
α9

α8

α3

α4

α5

Zn2+

Mn2+ Zn2+Zn2+

Thr171

Tyr299
Asn116

Met218

Asn215

Thr211
Pro212

Trp308 Asp278

Arg307

Met304
Ala114

Mn2+ Mn2+

Ser430

Glu391

His528

Asp533

Arg492Gln462

Asp389

Asp466

DmMAEL
LASV NP

Cys506
Cys288

His509
His291

Cys529
Cys300

Zn2+
Zn2+

Glu399
Glu131

α1

β1 β2

β3

β4β5

α2

η1 η4

η3

α7

α6

η2
α9

α8

α3

α4

α5

Cys288

Cys300

Glu131

His291

Zn2+

DmMAEL

LASV NP

Mn2+ Zn2+Zn2+

dsRNA

Thr171

Tyr299
Asn116

Met218

Asn215

Thr211
Pro212

Trp308 Asp278

Arg307

Met304
Ala114

Mn2+ Mn2+

Ser430

Glu391

His528

Asp533

Arg492Gln462

Asp389

Asp466

DmMAEL LASV NP

N (84)

C (332)

dsRNA dsRNA
ECHC motif

DmMAEL

LASV NP

180˚180˚

ECHC motif

Catalytic groove

Central groove

ECHC motif

(legend on next page)

368 Cell Reports 11, 366–375, April 21, 2015 ª2015 The Authors



DmMAEL, we next measured the cleavage activity toward a

series of 50 32P-labeled nucleic acid substrates. DmMAEL

efficiently cleaved ssRNA, but neither dsRNA nor ssDNA (Fig-

ure 2E). DmMAEL cleaved circular 40AS ssRNA, indicating that

DmMAEL is an endoribonuclease (Figure 2F). The cleavage

pattern of the 40AS ssRNA revealed that DmMAEL preferentially

cleaves ssRNA at a guanine residue (especially at successive

guanine stretches) (Figure 2E). To exclude the possibility that

the 40AS ssRNA adopts a secondary structure that affects the

cleavage by DmMAEL, we measured the nuclease activity of

DmMAEL toward 15-nt poly(A) RNA substrates with or without

guanine residues, which are unlikely to adopt secondary struc-

tures. DmMAEL cleaved 15-nt poly(A) containing guanine resi-

dues, but not 15-nt poly(A), confirming that DmMAEL cleaves

ssRNA at guanine residues (Figure 2G). We next compared the

cleavage patterns of the 40AS ssRNA by DmMAEL and RNase

T1, an endonuclease that specifically cleaves ssRNA at the 30

side of guanine residues (Pace et al., 1991). RNase T1 cleaved

the 40AS ssRNA evenly at guanine residues (Figure 2H). In

contrast, DmMAEL did not efficiently cleave the 40AS ssRNA

at 3 nt from the 50 end (position 1) and 4 nt from the 30 end (po-

sition 6) (Figure 2H). The ssRNase activity of DmMAEL was in-

hibited in the presence of 25 mM NaCl, whereas that of RNase

T1 remained robust in the presence of 100 mM NaCl (Figure 2I).

These differences in their enzymatic properties indicated that the

RNA cleavage mechanism of DmMAEL is distinct from that of

RNase T1. To examine whether the nuclease activity is specific

to D. melanogaster Mael, we measured the ssRNase activities

of the purified MAEL domains from Bombyx moriMael (residues

92–335, referred to as BmMAEL) and Mus musculus Mael (resi-

dues 83–327, referred to as MmMAEL) (Figure 2J). We found

that both BmMAEL and MmMAEL cleave the 40AS ssRNA in

similar manners to that of DmMAEL, although the ssRNase

activity of MmMAEL was weaker than those of DmMAEL and

BmMAEL (Figure 2J). Together, these biochemical data revealed

that the MAEL domain is an evolutionarily conserved, single-

strand-specific endoribonuclease.

Potential RNA-Binding Residues of the MAEL Domain
Since the MAEL domain lacks the canonical DEDDh motif, we

tried to identify the catalytic residues of DmMAEL, based on the

sequence conservation among Mael orthologs. However, multi-

ple sequence alignments indicated that only the ECHC motif is

solvent accessible and strictly conserved across the Mael ortho-
Figure 1. Crystal Structure of DmMAEL

(A) Domain structure of D. melanogaster Mael.

(B) Overall structure of DmMAEL. The zinc ion is shown as a gray sphere. Disord

lines.

(C) Close-up view of the ECHC motif. An FO � FC simulated annealing omit map

(D) Structures of DmMAEL (left) and LASV NP in complex with dsRNA (PDB ID 4GV

and LASV NP, respectively. The manganese ions are shown as pink spheres. T

respectively.

(E) Superimposition of the ECHC motifs of DmMAEL and LASV NP.

(F) Central grooves of DmMAEL (left) and LASV NP (right). In LASV NP, the DED

respectively. The bound manganese ions are shown as pink spheres, and the b

central groove are shown in the same color code. Coordination bonds are show

(G) Electrostatic surface potentials of DmMAEL and LASV NP (contoured from �
See also Figures S1–S3 and Table S1.
logs (Figures S1 and S2). Thus, based on the crystal structure of

DmMAEL, we prepared 12 DmMAEL mutants, in which the sol-

vent-exposed, hydrophilic residues were individually substituted

with alanine (Figure 3A). All of the mutants eluted as a single

monodisperse peak from the gel-filtration column (data not

shown), confirming their structural integrity. We then examined

the ssRNase activities of the purifiedmutants, using 40AS ssRNA

as the substrate (Figure 3B). The K109A, K188A, N192A, and

E292A mutants showed ssRNase activities comparable to that

of the wild-type DmMAEL, and the K277A mutant showed

moderately reduced ssRNase activity (Figure 3B). In contrast,

the K140A, K199A, Q289A, D293A, D295A, D314A, and K328A

mutants showed markedly reduced ssRNase activities (Fig-

ure 3B), indicating that Lys140, Lys199, Gln289, Asp293,

Asp295, Asp314, and Lys328 are involved in the ssRNase activ-

ity. AlthoughDmMAEL, BmMAEL, andMmMAEL cleaved ssRNA

in a similarmanner (Figure 2J), these residues (except forAsp295)

are not conserved among the Mael orthologs (Figure S1). More-

over, these mutations reduced, but did not abolish, the ssRNase

activity (Figure 3B), suggesting that these residues are involved in

ssRNA binding, but not in catalysis. The positively charged resi-

dues, Lys140, Lys199, and Lys328, would interact with the nega-

tively charged phosphate backbone of the ssRNA substrates.

These residues are located on the opposite side of the central

groove, which is equivalent to the catalytic groove of LASV NP

(Figures 3C and 3D). To examine whether the central groove is

involved in the ssRNase activity, we tried to prepare four addi-

tional DmMAEL mutants (N116A, M218A, Y299A, and M304A),

in which the residues corresponding to the DEDDh motif were

individually substituted with alanine. These four mutants were

not expressed inE. coli as soluble proteins (data not shown), sug-

gesting that these residueswithin the central groove contribute to

structural integrity. In addition, the C228S mutant used for our

structural analysis exhibited the ssRNase activity (Figure 3B),

indicating that the C228S mutation does not have considerable

impact on the structure and function of DmMAEL.

SincebothDmMAELandRNaseT1preferentially cleave ssRNA

at guanine residues, we attempted to detect the structural similar-

ity between them. RNase T1 cleaves ssRNA through a metal-ion-

independentmechanism, inwhich a conservedhistidine serves as

a catalytic residue (Pace et al., 1991). Since His329 of DmMAEL is

the only histidine residue conserved among DmMAEL, BmMAEL,

and MmMAEL (Figure S1), we examined the RNase activity of the

DmMAEL H329A mutant (Figure 3A). The H329A mutant retained
ered regions (residues 156–162, 228–229, and 236–237) are shown as dashed

contoured at 3.5s is shown as a blue mesh.

9) (right). The zinc ions are shown as light blue and yellow spheres in DmMAEL

he ECHC motif and the central groove are indicated by green and red boxes,

Dh-motif and RNA-binding residues are shown as magenta and white sticks,

ound dsRNA is omitted for clarity. In DmMAEL, the equivalent residues in the

n as dashed lines.

5 kT/e [red] to +5 kT/e [blue]).
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the ssRNase activity, indicating that His329 is not involved in

ssRNA cleavage (Figure 3B). Thus, despite our numerous at-

tempts, the RNA cleavage mechanism remains to be elucidated.

Nonetheless, our mutational analyses support the notion that

Mael does not share an active site with either RNase T1 or the

DEDDh family members.

The ssRNase Activity of Mael Appears Dispensable for
Piwi/Mael-Mediated TE Silencing in Drosophila OSCs
To examine the contribution of the MAEL domain to Piwi/

Mael-mediated TE silencing, we overexpressed DmMAEL,

FL-DmMael, the four ECHC-motif single mutants (E131A,

C288A, H291A, and C300A) of FL-DmMael, the ECHC-motif

quadruple mutants (E131A/C288A/H291A/C300A) of FL-

DmMael, and DmMAEL in mael-depleted OSCs and then moni-

tored the expression levels of TEs by qRT-PCR. FL-DmMael and

DmMAEL rescued the derepression of a variety of somatic TEs

(mdg1, 297, blood, Tabor, gypsy, and ZAM) (Figures 4A, 4B,

and S4A), indicating that the MAEL domain plays a central

role in Piwi/Mael-mediated TE silencing in Drosophila OSCs,

consistent with a previous report (Sienski et al., 2012). All of

the ECHC-motif mutants of FL-DmMael and DmMAEL failed

to rescue TE derepression (Figures 4A and S4B), highlighting

the functional significance of the ECHC motif for Piwi/Mael-

mediated TE silencing.

To examine whether the ssRNase activity of DmMAEL is

involved in Piwi/Mael-mediated TE silencing, we next over-

expressed the seven ssRNase-deficient DmMAEL mutants

(K140A, K199A, Q289A, D293A, D295A, D314A, and K328A) in

mael-depleted OSCs and then monitored the levels of TE dere-

pression. Like wild-type DmMAEL, all seven of the ssRNase-

deficient mutants rescued TE derepression (Figures 4A and

S4C). Since the ECHC-motif mutants of DmMAEL were not ex-

pressed in E. coli as soluble proteins, we could not examine their

ssRNase activities in vitro. Overall, these results suggested that

the ssRNA cleavage activity of Mael appears dispensable for

Piwi/Mael-mediated TE silencing in Drosophila OSCs.

DISCUSSION

The present crystal structure revealed that DmMAEL adopts

an RNase H-like fold but does not share catalytic residues
Figure 2. ssRNA-Cleavage Activity of the MAEL Domain

(A) ssRNase activity of DmMAEL. The gel-filtration chromatography elution pro

fractions 1–8 (bottom). Each fraction (1 ml) was incubated with the 40AS ssRNA

(B) Dose dependency of the DmMAEL ssRNase activity. DmMAEL (0.14–2.2 mM

(C) Time dependency of the DmMAEL ssRNase activity. DmMAEL (2.2 mM) was

(D) Effect of divalent cations on the DmMAEL ssRNase activity.

(E) Substrate specificities of DmMAEL. ‘‘S’’ and ‘‘AS’’ indicate the sense and ant

(F) ssRNase activity of DmMAEL toward linear and circular 40AS ssRNA. Exonuc

(G) ssRNase activity of DmMAEL toward 15-nt poly(A) ssRNA with and without g

(H) Comparison of the ssRNase activities of DmMAEL with RNase T1. DmMAEL (0

26�C for 3 hr. The nucleotide sequence of the substrate 40AS ssRNA is shown o

cleavage sites are indicated by red numbers.

(I) Comparison of the ssRNase activities of DmMAEL and RNase T1 in the prese

(J) ssRNase activities of DmMAEL, BmMAEL, and MmMAEL. SDS-PAGE anal

MmMAEL.

See also Table S2.
with the RNase H-like superfamily members. Unexpectedly,

our biochemical analyses revealed that DmMAEL has ssRNase

activity. We further showed that BmMAEL and MmMAEL also

have the ssRNase activities, and we identified seven potential

ssRNA-binding residues of DmMAEL. These results strongly

support our surprising finding that the MAEL domain pos-

sesses the ssRNase activity, although it lacks the canonical

active site conserved across the RNase H-like superfamily

nucleases.

Previous studies showed that Mael participates in piRNA

biogenesis in germ cells of the fly ovary and mouse testis (Lim

and Kai, 2007; Sienski et al., 2012; Aravin et al., 2009; Castañeda

et al., 2014). In the adult mouse testis, a ribonucleoprotein com-

plex comprising Mael, the PIWI protein MIWI, and the Tudor-

domain-containing protein TDRD6 is involved in the processing

of precursor transcripts into mature pachytene piRNAs, a class

of mammalian piRNAs (Castañeda et al., 2014). Notably, the

nuclease activity of MIWI is not required for piRNA biogenesis

(Reuter et al., 2011), and the ribonucleoprotein complex lacks a

potential nuclease (Castañeda et al., 2014), suggesting that

Mael may be responsible for the processing of pachytene piRNA

precursors in adultmouse testis. Thismodel is consistentwith our

finding that MmMAEL exhibits the ssRNase activity. Together,

these observations suggested that the ssRNase activity of Mael

is involved in the processing of piRNA precursors in mice.

A previous study showed that the MAEL domain plays a cen-

tral role in Piwi/Mael-mediated TE silencing in Drosophila OSCs

(Sienski et al., 2012). In OSCs, the mael KD has mild effects on

the establishment of H3K9me3 but increases RNA polymerase

II occupancy at target heterochromatic loci, thereby resulting in

the derepression of TEs (Sienski et al., 2012). These observa-

tions indicated that Mael acts downstream of or in parallel to

the H3K9me3 modification event. A large-scale genetic screen

further indicated that, in addition to Piwi and Mael, the zinc

finger domain-containing protein Gtsf1 (Dönertas et al., 2013;

Ohtani et al., 2013) and several chromatin-associated factors,

such as the histone deacetylase HDAC3 and the histone chap-

erone Asf1, are involved in the Drosophila somatic piRNA

pathway (Handler et al., 2013; Muerdter et al., 2013). Consis-

tent with the previous report (Sienski et al., 2012), our cell-

based analysis indicated that the MAEL domain is involved in

TE silencing in Drosophila OSCs. Our mutational analysis
file of DmMAEL (top). SDS-PAGE analysis (middle) and ssRNase activity of

and then analyzed by 15% denaturing PAGE.

) was incubated with the 40AS ssRNA at 26�C for 3 hr.

incubated with the 40AS ssRNA at 26�C for 15–180 min.

isense strands of dsRNA, respectively.

lease T (ExoT) was used as a control.

uanine residues. The asterisk indicates the cleavage products.

.14–2.2 mM) or RNase T1 (0.5–10 units) was incubated with the 40AS ssRNA at

n the right of the gel, with guanine residues highlighted in bold. The predicted

nce of NaCl.

ysis (left) and ssRNase activities (right) of purified DmMAEL, BmMAEL, and
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Figure 3. Potential ssRNA-Binding Residues of DmMAEL

(A) Purified wild-type and mutants of DmMAEL. WT, wild-type.

(B) ssRNase activities of purified wild-type and mutants of DmMAEL. The ssRNase activities were measured using the 40AS ssRNA as the substrate.

(C) Structural mapping of the ssRNase-deficient mutations. Residues involved in ssRNA cleavage are colored red, whereas residues not involved in ssRNA

cleavage are colored cyan. The ECHC motif is colored yellow. The central groove is indicated by a gray circle.

(D) Electrostatic surface potentials of DmMAEL, viewed from the same direction as in (C) (contoured from �5 kT/e [red] to +5 kT/e [blue]).
further suggested that the ssRNase activity of the MAEL

domain appears dispensable for TE silencing. Thus, we pro-

pose that Mael interacts with other piRNA factors via the

MAEL domain and thereby participates in TE silencing in

Drosophila OSCs.

A previous bioinformatics analysis suggested that the MAEL

domain evolved from a DEDDh exonuclease by switching the

catalytic residues from the DEDDh motif to the ECHC motif

and that the MAEL domain may possess the nuclease activity

(Zhang et al., 2008). Consistent with this, our structural and

biochemical data revealed that the MAEL domain lacks the

DEDDh motif but shows ssRNase activity. Given that the

ECHC motif is strictly conserved among Mael orthologs (Figures

S1 and S2), the ECHC motif may play a catalytic role in addition

to a structural role. This idea is supported by the observation that

Asp295 of DmMAEL, which is highly conserved and located

close to the ECHC motif, is involved in the ssRNase activity.
372 Cell Reports 11, 366–375, April 21, 2015 ª2015 The Authors
If the ECHC motif participates in catalysis, then it is possible

that the ssRNase activity of Mael is involved in TE silencing in

DrosophilaOSCs, since the ECHC-motif mutants failed to rescue

TE derepression in our cell-based rescue experiments. All of

the ssRNase-deficient DmMAEL mutants we examined in our

cell-based assays retained slight ssRNase activities in vitro,

which might be sufficient for TE silencing when overexpressed

in OSCs. Indeed, in our previous study on Zuc, an endoribonu-

clease implicated in primary piRNA biogenesis, TE derepression

was not rescued by the overexpression of the catalytically

inactive Zuc mutant but was efficiently rescued by the overex-

pression of the RNA-binding-deficient Zuc mutants retaining re-

sidual ssRNase activity (Nishimasu et al., 2012). Thus, we cannot

completely rule out the possibility that the ssRNase activity of

Mael is required for TE silencing. To fully understand the multiple

roles of Mael, an enigmatic key factor in the piRNA pathway, it

will be critical to elucidate (1) its ssRNA cleavage mechanism,
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Figure 4. Effects of Mael Mutations on TE

Silencing in OSCs

(A) Repression of the mdg1 transposon by FL-

DmMael, DmMAEL, the ECHC-motif mutants of

FL-DmMael, the ECHC-motif quadruple mutant

of DmMAEL, and the ssRNase-deficient mutants

of DmMAEL. Myc-tagged proteins were overex-

pressed in mael-depleted Drosophila OSCs, and

the expression levels of themdg1 transposonwere

monitored by qRT-PCR (n = 3; error bars indicate

SEM). Myc-tagged EGFP was used as a control.

The ECHC mutant represents the E131A/C288A/

H291A/C300A quadruple mutant.

(B) Repression of a subset of TEs by FL-DmMael

and DmMAEL.

See also Figure S4 and Table S2.
(2) its endogenous ssRNA substrates, and (3) the physiological

relevance of its ssRNase activity.

EXPERIMENTAL PROCEDURES

Detailed experimental procedures are described in Supplemental Experi-

mental Procedures, and related sequences are shown in Table S2.

DmMAEL (residues 84–333, C228S) was expressed in E. coli as a

His-tagged protein, and purified by chromatography on Ni-NTA Superflow

(QIAGEN) and Resource Q (GE Healthcare) columns. Crystals were obtained

at 20�C by the sitting-drop vapor diffusion method. X-ray diffraction data

were collected on beamline BL32XU at SPring-8 (Hyogo). The crystal struc-

ture of DmMAEL was determined by the SAD method, using the intrinsic

zinc atom.

For nuclease activity measurements, the wild-type andmutants of DmMAEL

and BmMAEL (residues 92–335) were expressed in E. coli as His-tagged pro-

teins, and the proteins were purified by chromatography on Ni-NTA Superflow,

Resource Q, Resource PHE (GE Healthcare), and Superdex 200 10/300 (GE

Healthcare) columns.MmMAEL (residues 83–327) was expressed in Sf9 insect

cells as a His-SUMOstar-tagged protein (LifeSensors) and purified by chroma-

tography using a similar protocol as for DmMAEL. Nuclease activity measure-

ments were performed in buffer containing 25 mM HEPES-KOH (pH 7.4) and

5 mMDTT. Rescue experiments were performed essentially as described pre-

viously (Nishimasu et al., 2012).

ACCESSION NUMBERS

The atomic coordinates of DmMAEL have been deposited in the Protein

Data Bank under accession number 4YBG. The sequencing data of Bombyx
mori Mael have been deposited in GenBank under accession number

LC032360.
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