57 research outputs found
Timolol activates the enzyme activities of human carbonic anhydrase I and II.
Timolol, a beta-blocker, has been shown to be an effective ocular hypotensive agent when used alone or with carbonic anhydrase inhibitor on ocular hypertensive or open angle glaucoma patients. The effect of timolol hemihydrate on the CO(2) hydration activities of human carbonic anhydrase (HCA) I and II and their reaction mechanisms were investigated. Timolol activates the enzyme activities of HCA I and HCA II. In HCA I and II, the enzyme kinetic results clearly showed that timolol increases the value of V(max) but does not influence the value of K(m). The enzyme kinetic method showed that timolol noncompetitively activates HCA I and II activities through the formation of a ternary complex consisting of the enzyme, the substrate, and timolol. These results indicate that timolol binds apart from the narrow cavity of the active site. AutoDocking results showed that timolol binds at the entrance of the active site cavity in a region where the proton shuttle residue, His 64, of HCA I or II, is placed. The enzyme kinetic and AutoDocking results showed that timolol might weakly bind near the proton shuttle residue, His 64, to accelerate the proton transfer rate from His 64 to the buffer components. It is known that efficient activators of carbonic anhydrase possess a bulky aromatic/heterocyclic moiety and a primary/secondary amino group in their molecular structure. Timolol has a heterocyclic moiety and a secondary amino group, which are typical structures in efficient activators of carbonic anhydrase.Timolol, a beta-blocker, has been shown to be an effective ocular hypotensive agent when used alone or with carbonic anhydrase inhibitor on ocular hypertensive or open angle glaucoma patients. The effect of timolol hemihydrate on the CO(2) hydration activities of human carbonic anhydrase (HCA) I and II and their reaction mechanisms were investigated. Timolol activates the enzyme activities of HCA I and HCA II. In HCA I and II, the enzyme kinetic results clearly showed that timolol increases the value of V(max) but does not influence the value of K(m). The enzyme kinetic method showed that timolol noncompetitively activates HCA I and II activities through the formation of a ternary complex consisting of the enzyme, the substrate, and timolol. These results indicate that timolol binds apart from the narrow cavity of the active site. AutoDocking results showed that timolol binds at the entrance of the active site cavity in a region where the proton shuttle residue, His 64, of HCA I or II, is placed. The enzyme kinetic and AutoDocking results showed that timolol might weakly bind near the proton shuttle residue, His 64, to accelerate the proton transfer rate from His 64 to the buffer components. It is known that efficient activators of carbonic anhydrase possess a bulky aromatic/heterocyclic moiety and a primary/secondary amino group in their molecular structure. Timolol has a heterocyclic moiety and a secondary amino group, which are typical structures in efficient activators of carbonic anhydrase
Recommended from our members
In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer
EGFR mutated lung cancer accounts for a significant subgroup of non-small-cell lung cancer (NSCLC). Over the last decade, multiple EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been developed to target mutated EGFR. However, there is little information regarding mutation specific potency of EGFR-TKIs against various types of EGFR mutations. The purpose of this study is to establish an in vitro model to determine the “therapeutic window” of EGFR-TKIs against various types of EGFR mutations, including EGFR exon 20 insertion mutations. The potency of 1st (erlotinib), 2nd (afatinib) and 3rd (osimertinib and rociletinib) generation EGFR-TKIs was compared in vitro for human lung cancer cell lines and Ba/F3 cells, which exogenously express mutated or wild type EGFR. An in vitro model of mutation specificity was created by calculating the ratio of IC50 values between mutated and wild type EGFR. The in vitro model identified a wide therapeutic window of afatinib for exon 19 deletions and L858R and of osimertinib and rociletinib for T790M positive mutations. The results obtained with our models matched well with previously reported preclinical and clinical data. Interestingly, for EGFR exon 20 insertion mutations, most of which are known to be resistant to 1st and 2nd generation EGFR-TKIS, osimertinib was potent and presented a wide therapeutic window. To our knowledge, this is the first report that has identified the therapeutic window of osimertinib for EGFR exon 20 insertion mutations. In conclusion, this model will provide a preclinical rationale for proper selection of EGFR-TKIs against clinically-relevant EGFR mutations
Attentional Set-Shifting Deficit in Parkinson’s Disease Is Associated with Prefrontal Dysfunction: An FDG-PET Study
The attentional set-shifting deficit that has been observed in Parkinson’s disease (PD) has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG) positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Different Impacts of COVID-19 on Quality of Therapy, Psychological Condition, and Work Life Among Occupational Therapists in Physical and Mental Health Fields
BackgroundThe negative impacts of the coronavirus disease 2019 (COVID-19) pandemic have worsened the quality of therapy, psychological condition, and work life of second-line healthcare workers and occupational therapists (OTs). However, no study has investigated whether the impact of COVID-19 varies among OTs working in different fields. This study aimed to investigate the differences on the impact of COVID-19 between OTs in the physical and mental health fields. MethodsA cross-sectional online survey was conducted in Japan between January 20 and January 25, 2021. A total of 4,418 registered OTs who were members of the Japanese Association of Occupational Therapists volunteered for this study. After screening using the exclusion criteria, 1,383 participants were classified into two groups based on their field (mental health and physical health), and their quality of therapy, psychological condition, and work life were analyzed. ResultsOTs in the mental health field showed a greater decrease in therapy quality and increase in workload and a lower rate of decrease in working hours than those in the physical health field. In the multinomial logistic regression analysis, decreased and increased therapy quality and decreased therapy quality were significantly associated with depression in the physical health field, and decreased therapy quality was associated with insomnia in the mental health field. Furthermore, insomnia and anxiety were commonly associated with increased workload and working hours, respectively, in both fields, whereas anxiety and depression were associated with increased workload only in the physical health field. ConclusionsThese results demonstrate that COVID-19 differently impacted quality of treatment, workload, work time, and psychological condition in the physical and mental health fields; moreover, the relationships among these are different in these two fields. These results highlight the importance of investigating the field-specific negative impacts of COVID-19 on OTs and may provide helpful information for devising tailored and effective prevention and intervention strategies to address these challenges
Psychological Impact of COVID-19 on Occupational Therapists: An Online Survey in Japan
Importance: Coronavirus disease 2019 (COVID-19) has had a severe psychological impact on frontline and second-line medical workers. However, few empirical reports have been published on its impact on occupational therapists. Clarifying the mental health status of occupational therapists is important to maintain care quality and prevent psychological problems in this population. Objective: To investigate the psychological impact of COVID-19 on Japanese occupational therapists in prefectures with and without severe pandemic-related restrictions and elucidate factors associated with psychological problems such as anxiety, depression, and insomnia. Design: A cross-sectional online survey using region-stratified two-stage cluster sampling conducted May 28-31, 2020. Participants: The sample included 371 participants (63.1% women) in the prefectures under specific cautions (i.e., where residents were strictly advised to refrain from outings) and 1,312 in the prefectures without such cautions (61.9% women). Results: The increase in workload due to the pandemic was significantly related to an increase in anxiety, depression, and insomnia, and an attempt to avoid talking face to face with others was significantly related to an increase in anxiety regardless of area. In prefectures under specific cautions as of May 25, 2020, the provision of sufficient information on COVID-19 by the workplace significantly reduced the risk of insomnia. In other prefectures, the provision of sufficient information significantly reduced the risk of depression. Conclusions and Relevance: These results demonstrate the severe negative psychological impact of the increase in workload resulting from COVID-19 and suggest the importance of psychological support for occupational therapists, such as the provision of sufficient information by the workplace. What This Article Adds: This study highlights the importance of providing psychological support for occupational therapists worldwide
- …