85 research outputs found

    Temperature dependence of the impurity-induced resonant state in Zn-doped Bi_2Sr_2CaCu_2O8+δ_{8+\delta} by Scanning Tunneling Spectroscopy

    Full text link
    We report on the temperature dependence of the impurity-induced resonant state in Zn-doped Bi_2Sr_2CaCu_2O8+δ_{8+\delta} by scanning tunneling spectroscopy at 30 mK < T < 52 K. It is known that a Zn impurity induces a sharp resonant peak in tunnel spectrum at an energy close to the Fermi level. We observed that the resonant peak survives up to 52 K. The peak broadens with increasing temperature, which is explained by the thermal effect. This result provides information to understand the origin of the resonant peak.Comment: 4 pages, 3 figures, to appear in Phys. Rev.

    Inelastic neutron scattering study on the resonance mode in an optimally doped superconductor LaFeAsO0.92_{0.92}F0.08_{0.08}

    Full text link
    An optimally doped iron-based superconductor LaFeAsO0.92_{0.92}F0.08_{0.08} with Tc=29T_c = 29 K has been studied by inelastic powder neutron scattering. The magnetic excitation at Q=1.15Q=1.15 \AA−1^{-1} is enhanced below TcT_c, leading to a peak at Eres∼13E_{res}\sim13 meV as the resonance mode, in addition to the formation of a gap at low energy below the crossover energy Δc∼10meV\Delta_{c}\sim10 meV. The peak energy at Q=1.15Q=1.15 \AA−1^{-1} corresponds to 5.2kBTc5.2 k_B T_c in good agreement with the other values of resonance mode observed in the various iron-based superconductors, even in the high-TcT_c cuprates. Although the phonon density of states has a peak at the same energy as the resonance mode in the present superconductor, the QQ-dependence is consistent with the resonance being of predominately magnetic origin.Comment: 4 pages, 5 Postscript figure

    Resonant inelastic x-ray scattering in single-crystal superconducting PrFeAsO0.7

    Full text link
    Resonant inelastic x-ray scattering (RIXS) spectra at the Fe K-edge were measured for a single crystal of the iron oxypnictide superconductor PrFeAsO0.7 (Tc=42 K). They disclose a weak, broad feature centered around 4.5 eV energy loss, which is slightly resonantly enhanced when the incident energy is tuned in the vicinity of the 4p white line. We tentatively ascribe it to the charge-transfer excitation between As 4p and Fe 3d.Comment: 2 pages, 2 figure

    Effects of out-of-plane disorder on the nodal quasiparticle and superconducting gap in single-layer Bi2_2Sr1.6Ln0.4_{1.6}Ln_{0.4}CuO6+δ_{6+\delta} (LnLn = La, Nd, Gd)

    Full text link
    How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi2_2Sr1.6_{1.6}LnLn0.4_{0.4}CuO6+δ_{6+\delta} (LnLn = La, Nd, Gd) by angle-resolved photoemission spectroscopy. We have observed that, with increasing disorder, while the Fermi surface shape and band dispersions are not affected, the quasi-particle width increases, the anti-nodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the anti-nodal gap and the depression of the superconducting gap in the nodal region
    • …
    corecore