4,344 research outputs found

    Effects of the Resource Distance on the Decisions of Mycelial Behavior

    Get PDF
    departmental bulletin pape

    Convexity restoration from hairy black hole in Einstein-Maxwell-charged scalar system in AdS

    Full text link
    In the Einstein-Maxwell-charged scalar system with a negative cosmological constant in arbitrary dimensions higher than three, there exists a horizonless charged soliton solution, which we construct explicitly for an arbitrary mass of the scalar in perturbative series in small charge. We find that the stability of the soliton is determined by the validity of the AdS weak gravity conjecture. The existence of a stable soliton might endanger the convexity of the (free) energy as a function of the charge because the phase transition between the soliton and the extremal Reissner-Nordstrom black hole would be discontinuous. We, however, argue that the existence of the hairy black hole solution circumvents the violation of convexity. The thermodynamic properties of the hairy black hole show that the phase transition becomes continuous irrespective of whether the AdS weak gravity conjecture holds. When it holds, the phase transition occurs between the soliton and the hairy black hole, and when it is violated, the phase transition occurs between the extremal Reissner-Nordstrom black hole and the hairy black hole.Comment: 41 pages, 1 figur

    Strong coupling in the Kondo problem in the low-temperature region

    Full text link
    The magnetic field dependence of the average spin of a localized electron coupled to conduction electrons with an antiferromagnetic exchange interaction is found for the ground state. In the magnetic field range μH0.5Tc\mu H\sim 0.5 T_c (TcT_c is the Kondo temperature) there is an inflection point, and in the strong magnetic field range μHTc\mu H\gg T_c, the correction to the average spin is proportional to (Tc/μH)2(T_c/\mu H)^2. In zero magnetic field, the interaction with conduction electrons also leads to the splitting of doubly degenerate spin impurity states

    The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines.

    Get PDF
    The pharmacology of hSK1, a small conductance calcium-activated potassium channel, was studied in mammalian cell lines (HEK293 and COS-7). In these cell types, hSK1 forms an apamin-sensitive channel with an IC(50) for apamin of 8 nM in HEK293 cells and 12 nM in COS-7 cells. The currents in HEK293 cells were also sensitive to tubocurarine (IC(50)=23 microM), dequalinium (IC(50)=0.4 microM), and the novel dequalinium analogue, UCL1848 (IC(50)=1 nM). These results are very different from the pharmacology of hSK1 channels expressed in Xenopus oocytes and suggest the properties of the channel may depend on the expression system. Our findings also raise questions about the role of SK1 channels in generating the apamin-insensitive slow afterhyperpolarization observed in central neurones

    Towards Mitigating Hallucination in Large Language Models via Self-Reflection

    Full text link
    Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks. However, the practical deployment still faces challenges, notably the issue of "hallucination", where models generate plausible-sounding but unfaithful or nonsensical information. This issue becomes particularly critical in the medical domain due to the uncommon professional concepts and potential social risks involved. This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets. Our investigation centers on the identification and comprehension of common problematic answers, with a specific emphasis on hallucination. To tackle this challenge, we present an interactive self-reflection methodology that incorporates knowledge acquisition and answer generation. Through this feedback process, our approach steadily enhances the factuality, consistency, and entailment of the generated answers. Consequently, we harness the interactivity and multitasking ability of LLMs and produce progressively more precise and accurate answers. Experimental results on both automatic and human evaluation demonstrate the superiority of our approach in hallucination reduction compared to baselines.Comment: Accepted by the findings of EMNLP 202

    catena-Poly[[aqua­(4-ethyl­benzoic acid-κO)lanthanum(III)]-tri-μ-4-ethyl­benzoato]

    Get PDF
    The reaction of lanthanum nitrate and 4-ethyl­benzoic acid (EBAH) in aqueous solution yielded the title polymer, [La(C9H9O2)3(C9H10O2)(H2O)]n. The asymmetric unit contains one LaIII atom, three 4-ethyl­benzoate (EBA) ligands, one neutral EBAH ligand and one coordinated water mol­ecule. Each LaIII ion is eight-coordinated by six O atoms from six bridging-bidentate EBA ligands, one O atom from a monodentate EBAH ligand and one water O atom in a distorted bicapped trigonal-prismatic geometry. The adjacent LaIII ions are linked by the carboxyl­ate groups of EBA ligands in a bridging-bidetate coordination mode, resulting in an infinite chain structure along the c axis. O—H⋯O hydrogen-bonding inter­actions involving the water mol­ecules, carboxyl­ate groups and carboxyl H atoms are formed within the one-dimensional polymer. One of the ethyl groups is disordered over two positions with occupancies of 0.717 (7) and 0.283 (7)

    Charge excitations associated with charge stripe order in the 214-type nickelate and superconducting cuprate

    Get PDF
    Charge excitations were studied for stipe-ordered 214 compounds, La5/3_{5/3}Sr1/3_{1/3}NiO4_{4} and 1/8-doped La2_{2}(Ba, Sr)x_{x}CuO4_{4} using resonant inelastic x-ray scattering in hard x-ray regime. We have observed charge excitations at the energy transfer of 1 eV with the momentum transfer corresponding to the charge stripe spatial period both for the diagonal (nikelate) and parallel (cuprates) stripes. These new excitations can be interpreted as a collective stripe excitation or charge excitonic mode to a stripe-related in-gap state.Comment: 5 pages, 4 figure

    Dynamics of quark-gluon plasma from Field correlators

    Full text link
    It is argued that strong dynamics in the quark-gluon plasma and bound states of quarks and gluons is mostly due to nonperturbative effects described by field correlators. The emphasis in the paper is made on two explicit calculations of these effects from the first principles: one analytic using gluelump Green's functions and another using independent lattice data on correlators. The resulting hadron spectra are investigated in the range T_c < T < 2T_c. The spectra of charmonia, bottomonia, light s-sbar mesons, glueballs and quark-gluon states calculated numerically are in general agreement with lattice MEM data. The possible role of these bound states in the thermodynamics of quark-gluon plasma is discussed.Comment: Revised version with new comments and references and corrected tables VII-IX; 34 pages + 6 figure
    corecore