596 research outputs found
Aligned Molecular Clouds towards SS433 and L=348.5 degrees; Possible Evidence for Galactic "Vapor Trail" Created by Relativistic Jet
We have carried out a detailed analysis of the NANTEN 12CO(J=1-0) dataset in
two large areas of ~25 square degrees towards SS433 (l~40 degree) and of ~18
square degrees towards l~348.5 degree, respectively. We have discovered two
groups of remarkably aligned molecular clouds at |b|~1--5 degree in the two
regions. In SS433, we have detected 10 clouds in total, which are well aligned
nearly along the axis of the X-ray jet emanating from SS433. These clouds have
similar line-of-sight velocities of 42--56 km s^-1 and the total projected
length of the feature is ~300 pc, three times larger than that of the X-ray
jet, at a distance of 3 kpc. Towards l~348.5 degree, we have detected four
clouds named as MJG348.5 at line-of-sight velocities of -80 -- -95 km s^-1 in
V_LSR, which also show alignment nearly perpendicular to the Galactic plane.
The total length of the feature is ~400 pc at a kinematic distance of 6 kpc. In
the both cases, the CO clouds are distributed at high galactic latitudes where
such clouds are very rare. In addition, their alignments and coincidence in
velocity should be even rarer, suggesting that they are physically associated.
We tested a few possibilities to explain these clouds, including protostellar
outflows, supershells, and interactions with energetic jets. Among them, a
favorable scenario is that the interaction between relativistic jet and the
interstellar medium induced the formation of molecular clouds over the last
~10^5-6 yrs. It is suggested that the timescale of the relativistic jet may be
considerably larger, in the order of 10^5-6 yrs, than previously thought in
SS433. The driving engine of the jet is obviously SS433 itself in SS433,
although the engine is not yet identified in MJG348.5 among possible several
candidates detected in the X-rays and TeV gamma rays.Comment: 29 pages, 10 figures, already published in PASJ, 2008,60, 71
Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots
Mandow, A; Cantador, T.J.; Reina, A.J.; MartĂnez, J.L.; Morales, J.; GarcĂa-Cerezo, A. "Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots," Robot2015: Second Iberian Robotics Conference, Advances in Robotics, (2016) Advances in Intelligent Systems and Computing, vol. 418. This is a self-archiving copy of the authorâs accepted manuscript. The final publication is available at Springer via
http://link.springer.com/book/10.1007/978-3-319-27149-1.The paper addresses terrain modeling for mobile robots with fuzzy elevation maps by improving computational
speed and performance over previous work on fuzzy terrain identification from a three-dimensional (3D) scan. To this end,
spherical sub-sampling of the raw scan is proposed to select training data that does not filter out salient obstacles. Besides,
rule structure is systematically defined by considering triangular sets with an unevenly distributed standard fuzzy partition
and zero order Sugeno-type consequents. This structure, which favors a faster training time and reduces the number of rule
parameters, also serves to compute a fuzzy reliability mask for the continuous fuzzy surface. The paper offers a case study
using a Hokuyo-based 3D rangefinder to model terrain with and without outstanding obstacles. Performance regarding error
and model size is compared favorably with respect to a solution that uses quadric-based surface simplification (QSlim).This work was partially supported by the Spanish CICYT project DPI 2011-22443, the Andalusian project PE-2010 TEP-6101, and Universidad de MĂĄlaga-AndalucĂa Tech
Boron Nitride Monolayer: A Strain-Tunable Nanosensor
The influence of triaxial in-plane strain on the electronic properties of a
hexagonal boron-nitride sheet is investigated using density functional theory.
Different from graphene, the triaxial strain localizes the molecular orbitals
of the boron-nitride flake in its center depending on the direction of the
applied strain. The proposed technique for localizing the molecular orbitals
that are close to the Fermi level in the center of boron nitride flakes can be
used to actualize engineered nanosensors, for instance, to selectively detect
gas molecules. We show that the central part of the strained flake adsorbs
polar molecules more strongly as compared with an unstrained sheet.Comment: 20 pages, 9 figure
Strong Suppression of Electrical Noise in Bilayer Graphene Nano Devices
Low-frequency 1/f noise is ubiquitous, and dominates the signal-to-noise
performance in nanodevices. Here we investigate the noise characteristics of
single-layer and bilayer graphene nano-devices, and uncover an unexpected 1/f
noise behavior for bilayer devices. Graphene is a single layer of graphite,
where carbon atoms form a 2D honeycomb lattice. Despite the similar
composition, bilayer graphene (two graphene monolayers stacked in the natural
graphite order) is a distinct 2D system with a different band structure and
electrical properties. In graphene monolayers, the 1/f noise is found to follow
Hooge's empirical relation with a noise parameter comparable to that of bulk
semiconductors. However, this 1/f noise is strongly suppressed in bilayer
graphene devices, and exhibits an unusual dependence on the carrier density,
different from most other materials. The unexpected noise behavior in graphene
bilayers is associated with its unique band structure that varies with the
charge distribution among the two layers, resulting in an effective screening
of potential fluctuations due to external impurity charges. The findings here
point to exciting opportunities for graphene bilayers in low-noise
applications
Depth concentrations of deuterium ions implanted into some pure metals and alloys
Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd-alloys (Pd-Ag, Pd-Pt, Pd-Ru,
Pd-Rh) were implanted by 25 keV deuterium ions at fluences in the range
(1.2{\div}2.3)x1022 D+/m2. The post-treatment depth distributions of deuterium
ions were measured 10 days and three months after the implantation using
Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS).
Comparison of the obtained results allowed to make conclusions about relative
stability of deuterium and hydrogen gases in pure metals and diluted Pd alloys.
Very high diffusion rates of implanted deuterium ions from V and Pd pure metals
and Pd alloys were observed. Small-angle X-ray scattering revealed formation of
nanosized defects in implanted corundum and titanium.Comment: 12 pages, 9 figure
Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout
The enormous stiffness and low density of graphene make it an ideal material
for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and
electrical readout of monolayer graphene resonators, and test their response to
changes in mass and temperature. The devices show resonances in the MHz range.
The strong dependence of the resonant frequency on applied gate voltage can be
fit to a membrane model, which yields the mass density and built-in strain.
Upon removal and addition of mass, we observe changes in both the density and
the strain, indicating that adsorbates impart tension to the graphene. Upon
cooling, the frequency increases; the shift rate can be used to measure the
unusual negative thermal expansion coefficient of graphene. The quality factor
increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing
many of the basic attributes of monolayer graphene resonators, these studies
lay the groundwork for applications, including high-sensitivity mass detectors
Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium
The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on
the basis of spatio-temporal pattern formation by local
contraction-oscillators. This biological system can be regarded as a
reaction-diffusion system which has spatial interaction by active flow of
protoplasmic sol in the cell. Paying attention to the physiological evidence
that the flow is determined by contraction pattern in the plasmodium, a
reaction-diffusion system having self-determined flow arises. Such a coupling
of reaction-diffusion-advection is a characteristic of the biological system,
and is expected to relate with control mechanism of amoeboid behaviours. Hence,
we have studied effects of the self-determined flow on pattern formation of
simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial
solution, the envelope dynamics follows the complex Ginzburg-Landau type
equation just after bifurcation occurs at finite wave number. The flow term
affects the nonlinear term of the equation through the critical wave number
squared. Contrary to this, wave number isn't explicitly effective with lack of
flow or constant flow. Thus, spatial size of pattern is especially important
for regulating pattern formation in the plasmodium. On the other hand, the flow
term is negligible in the vicinity of bifurcation at infinitely small wave
number, and therefore the pattern formation by simple reaction-diffusion will
also hold. A physiological role of pattern formation as above is discussed.Comment: REVTeX, one column, 7 pages, no figur
Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery
Reliable sample delivery is essential to biological imaging using X-ray Free Electron Lasers (XFELs). Continuous injection using the Gas Dynamic Virtual Nozzle (GDVN) has proven valuable, particularly for time-resolved studies. However, many important aspects of GDVN functionality have yet to be thoroughly understood and/or refined due to fabrication limitations. We report the application of 2-photon polymerization as a form of high-resolution 3D printing to fabricate high-fidelity GDVNs with submicron resolution. This technique allows rapid prototyping of a wide range of different types of nozzles from standard CAD drawings and optimization of crucial dimensions for optimal performance. Three nozzles were tested with pure water to determine general nozzle performance and reproducibility, with nearly reproducible off-axis jetting being the result. X-ray tomography and index matching were successfully used to evaluate the interior nozzle structures and identify the cause of off-axis jetting. Subsequent refinements to fabrication resulted in straight jetting. A performance test of printed nozzles at an XFEL provided high quality femtosecond diffraction patterns. (C) 2016 Optical Society of Americ
Observation of Electron-Hole Puddles in Graphene Using a Scanning Single Electron Transistor
The electronic density of states of graphene is equivalent to that of
relativistic electrons. In the absence of disorder or external doping the Fermi
energy lies at the Dirac point where the density of states vanishes. Although
transport measurements at high carrier densities indicate rather high
mobilities, many questions pertaining to disorder remain unanswered. In
particular, it has been argued theoretically, that when the average carrier
density is zero, the inescapable presence of disorder will lead to electron and
hole puddles with equal probability. In this work, we use a scanning single
electron transistor to image the carrier density landscape of graphene in the
vicinity of the neutrality point. Our results clearly show the electron-hole
puddles expected theoretically. In addition, our measurement technique enables
to determine locally the density of states in graphene. In contrast to
previously studied massive two dimensional electron systems, the kinetic
contribution to the density of states accounts quantitatively for the measured
signal. Our results suggests that exchange and correlation effects are either
weak or have canceling contributions.Comment: 13 pages, 5 figure
- âŠ