11,637 research outputs found
An Analysis of \pi\pi-Scattering Phase Shift and Existence of \sigma(555) particle
In most of the Nambu:Jona-Lasinio(NJL)-type models, realizing the hidden
chiral symmetry, the existence of a scalar particle \sigma is needed with a
mass m_\sigma=2 m_q, as a partner of the Nambu-Goldstone boson \pi. However,
the results of many analyses on \pi\pi phase-shift thus far made have been
negative for its existence. In this paper we re-analyze the phase-shift,
applying a new method, the interfering amplitude method, which treats the
T-matrix directly and describes multi-resonances in conformity with the
unitarity. As a result, the existence of \sigma has been strongly suggested
from the behavior of the \pi\pi-->\pi\pi phase shift between the \pi\pi- and
the KK- thresholds, with mass = 553.3 +- 0.5_{st} MeV and width= 242.6 +-
1.2_{st} MeV. The most crucial point in our analysis is the introduction of a
negative background phase, possibly reflecting a ``repulsive core" in \pi\pi
interactions. The properties of f_0(980) are also investigated from data
including those over the KK threshold. Its mass is obtained as 993.2 +-
6.5_{st} +- 6.9_{sys} MeV. Its width is about a hundred MeV, although this
depends largely on the treatment of the elasticity and the \pi\pi-->KK phase
shift, both of which may have large experimental uncertainties.Comment: 22 pages, Latex with Prog. Theor. Phys. format PTPTEX.sty, 4 EPS
figure
Subband filling and Mott transition in Ca_{2-x}Sr_xRuO_4
A new concept is proposed for the paramagnetic metal insulator transition in
the layer perovskite Ca_{2-x}Sr_xRuO_4. Whereas the pure Sr compound is
metallic up to very large Coulomb energies due to strong orbital fluctuations,
structural changes induced by doping with Ca give rise to a interorbital charge
transfer which makes the material extremely sensitive to local correlations.
Using dynamical mean field theory based on finite temperature multi-band exact
diagonalization it is shown that the combination of crystal field splitting and
onsite Coulomb interactions leads to complete filling of the d_xy band and to a
Mott transition in the half-filled d_xz,yz bands.Comment: 4 pages, 3 figure
Coulomb correlations do not fill the e'_g hole pockets in Na_{0.3}CoO_2
There exists presently considerable debate over the question whether local
Coulomb interactions can explain the absence of the small e'_g Fermi surface
hole pockets in photoemission studies of Na_{0.3}CoO_2. By comparing dynamical
mean field results for different single particle Hamiltonians and exact
diagonalization as well as quantum Monte Carlo treatments, we show that, for
realistic values of the Coulomb energy U and Hund exchange J, the e'_g pockets
can be slightly enhanced or reduced compared to band structure predictions, but
they do not disappear.Comment: 4 pages, 2 figure
Correlation induced spin freezing transition in FeSe: a dynamical mean field study
The effect of local Coulomb interactions on the electronic properties of FeSe
is explored within dynamical mean field theory combined with finite-temperature
exact diagonalization. The low-energy scattering rate is shown to exhibit
non-Fermi-liquid behavior caused by the formation of local moments.
Fermi-liquid properties are restored at large electron doping. In contrast,
FeAsLaO is shown to be located on the Fermi-liquid side of this spin freezing
transition.Comment: 4 pages, 5 figure
pi^0 pi^0 Scattering Amplitudes and Phase Shifts Obtained by the pi^- P Charge Exchange Process
The results of the analysis of the pi^0 pi^0 scattering amplitudes obtained
with pi^- P charge exchange reaction, pi^- P --> pi^0 pi^0 n, data at 9 GeV/c
are presented. The pi^0 pi^0 scattering amplitudes show clear f_0(1370) and
f_2(1270) signals in the S and D waves, respectively. The pi^0 pi^0 scattering
phase shifts have been obtained below Kbar K threshold and been analyzed by the
Interfering Amplitude method with introduction of negative background phases.
The results show a S wave resonance, sigma. Its Breit-Wigner parameters are in
good agreement with those of our previous analysis on the pi^+ pi^- phase shift
data.Comment: 4 pages, 4 figures. Proceedings of the int. conf. Hadron'99 at
Beijing, Aug. 1999. Presented for the collaboration of A.M.Ma, K.Takamatsu,
M.Y.Ishida, S.Ishida, T.Ishida, T. Tsuru and H. Shimizu, and the E135
collaboration. For our activities on sigma, visit
http://amaterasu.kek.jp/sigm
Mass Uncertainties of f0(600) and f0(1370) and their Effects on Determination of the Quark and Glueball Admixtures of the I=0 Scalar Mesons
Within a nonlinear chiral Lagrangian framework the correlations between the
quark and glueball admixtures of the isosinglet scalar mesons below 2 GeV and
the current large uncertainties on the mass of the f0(600) and the f0(1370) are
studied. The framework is formulated in terms of two scalar meson nonets (a
two-quark nonet and a four-quark nonet) together with a scalar glueball. It is
shown that while some properties of these states are sensitive to the mass of
f0(600) and f0(1370), several relatively robust conclusions can be made: The
f0(600), the f0(980), and the f0(1370) are admixtures of two and four quark
components, with f0(600) being dominantly a non-strange four-quark state, and
f0(980) and f0(1370) having a dominant two-quark component. Similarly, the
f0(1500) and the f0(1710) have considerable two and four quark admixtures, but
in addition have a large glueball component. For each state, a detailed
analysis providing the numerical estimates of all components is given. It is
also shown that this framework clearly favors the experimental values:
m[f0(600)] < 700 MeV and m[f0(1370)] = 1300-1450 MeV. Moreover, an overall fit
to the available data shows a reciprocal substructure for the f0(600) and the
f0(1370), and a linear correlation between their masses of the form m
[f0(1370)] = 0.29 m[f0(600)] + 1.22 GeV. The scalar glueball mass of 1.5-1.7
GeV is found in this analysis.Comment: placement of figures inside text improved. Content unchange
Mott transition in two-dimensional frustrated compounds
The phase diagrams of isotropic and anisotropic triangular lattices with
local Coulomb interactions are evaluated within cluster dynamical mean field
theory. As a result of partial geometric frustration in the anisotropic
lattice, short range correlations are shown to give rise to reentrant behavior
which is absent in the fully frustrated isotropic limit. The qualitative
features of the phase diagrams including the critical temperatures are in good
agreement with experimental data for the layered organic charge transfer salts
kappa-(BEDT-TTF)_2Cu[N(CN)_2]Cl and kappa-(BEDT-TTF)_2Cu_2(CN)_3.Comment: 4 pages, 4 figure
Effect of Dynamical Coulomb Correlations on the Fermi Surface of Na_0.3CoO_2
The t2g quasi-particle spectra of Na_0.3CoO_2 are calculated within the
dynamical mean field theory. It is shown that as a result of dynamical Coulomb
correlations charge is transfered from the nearly filled e_g' subbands to the
a_1g band, thereby reducing orbital polarization among Co t2g states. Dynamical
correlations therefore stabilize the small e_g' Fermi surface pockets, in
contrast to angle-resolved photoemission data, which do not reveal these
pockets.Comment: 4 pages, to appear in PR
- …