134 research outputs found

    Geomagnetic Survey along the Traverse Route Syowa-South Pole

    Get PDF

    Ion Optics of Sector-Type Magnetic Focusing Fields

    Get PDF
    The convergence of the ion beam in the sector-type magnetic focusing field of the mass spectrometer is treated geometrically. The real thickness of the ion beam was considered, and the ratio of the radius of deflection to the beam thickness is included as a common parameter in the expression for the final image width. The treatment is composed of three parts : the first order approximation, the second order approximation and the complete convergence. In conclusion, a new type of optical system consisting of a dual arrangement of circular magnetic fields, is proposed and given the name “Collimatron” optical system

    An Analytical Mass Spectrometer for the Gas Analysis

    Get PDF
    The tentative construction of a mass spectrometer of π/2 (Hipple type) single magnetic focusing to be used for the gas analysis is described in this paper. The mass scanning circuit contains a new electronic device replacing the mechanically driven scanner which has ever been used. For the analytical works, due emphasis should be given to the maintenance of the overall stability of the instruments for a long period of time. However, some analytical results are reported prior to this routine analysis and also the effects of the electron emitter treatment for the stabilization of the sensitivity and the cracking patterns (mass spectra) are discussed

    Protocol for Genome Editing to Produce Multiple Mutants in Wheat

    Get PDF
    Here, we describe a protocol for producing multiple recessive mutants via genome editing in hexaploid wheat (Triticum aestivum) cv. Fielder. Using Agrobacterium-delivered CRISPR/Cas9 and three sub-genome-specific primer sets, all possible combinations of single, double, and triple transgene-free mutants can be generated. The technique for acceleration of generation advancement with embryo culture reduces time for mutant production. The mutants produced by this protocol can be used for the analysis of gene function and crop improvement. For complete details on the use and execution of this protocol, please refer to Abe et al. (2019)

    Anti-Inflammatory Properties of Brazilian Green Propolis Encapsulated in a γ-Cyclodextrin Complex in Mice Fed a Western-Type Diet

    Get PDF
    Ageing is often accompanied by chronic inflammation. A fat- and sugar-rich Western-type diet (WTD) may accelerate the ageing phenotype. Cell culture studies have indicated that artepillin C-containing Brazilian green propolis exhibits anti-inflammatory properties. However, little is known regarding its anti-inflammatory potential in mouse liver in vivo. In this study, female C57BL/6NRj wild-type mice were fed a WTD, a WTD supplemented with Brazilian green propolis supercritical extract (GPSE) encapsulated in γ-cyclodextrin (γCD) or a WTD plus γCD for 10 weeks. GPSE-γCD did not affect the food intake, body weight or body composition of the mice. However, mRNA levels of the tumour necrosis factor α were significantly downregulated (p < 0.05) in these mice compared to those in the WTD-fed controls. Furthermore, the gene expression levels of other pro-inflammatory markers, including serum amyloid P, were significantly (p < 0.001) decreased following GPSE-γCD treatment. GPSE-γCD significantly induced hepatic ferritin gene expression (p < 0.01), which may contribute to its anti-inflammatory properties. Conversely, GPSE-γCD did not affect the biomarkers of endogenous antioxidant defence, including catalase, glutathione peroxidase-4, paraoxonase-1, glutamate cysteine ligase and nuclear factor erythroid 2-related factor-2 (Nrf2). Overall, the present data suggest that dietary GPSE-γCD exhibits anti-inflammatory, but not antioxidant activity in mouse liver in vivo. Thus, GPSE-γCD has the potential to serve as a natural hepatoprotective bioactive compound for dietary-mediated strategies against chronic inflammation

    Transcriptional and Epigenetic Consequences of DMSO Treatment on HepaRG Cells

    Get PDF
    Dimethyl sulfoxide (DMSO) is used to sustain or favor hepatocyte differentiation in vitro. Thus, DMSO is used in the differentiation protocol of the HepaRG cells that present the closest drug-metabolizing enzyme activities to primary human hepatocytes in culture. The aim of our study is to clarify its influence on liver-specific gene expression. For that purpose, we performed a large-scale analysis (gene expression and histone modification) to determine the global role of DMSO exposure during the differentiation process of the HepaRG cells. The addition of DMSO drives the upregulation of genes mainly regulated by PXR and PPARα whereas genes not affected by this addition are regulated by HNF1α, HNF4α, and PPARα. DMSO-differentiated-HepaRG cells show a differential expression for genes regulated by histone acetylation, while differentiated-HepaRG cells without DMSO show gene signatures associated with histone deacetylases. In addition, we observed an interplay between cytoskeleton organization and EMC remodeling with hepatocyte maturation

    Dietary Tocotrienol/ -Cyclodextrin Complex Increases Mitochondrial Membrane Potential and ATP Concentrations in the Brains of Aged Mice

    Get PDF
    Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including -and -tocotrienol (T3), may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/ -cyclodextrin complex (T3CD) on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM). Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, -glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice

    個人文書の収集・整理・公開に関する諸課題 : 第1回広島大学文書館研究集会記録集

    Get PDF
    趣旨説明…広島大学文書館長  小池 聖一 1  報告1 広島大学文書館における個人文書の所蔵・公開状況について…広島大学文書館 石田 雅春 3  質疑応答1…13  報告2 アメリカミシガン大学の歴史図書館:所蔵資料と利用の現状…桜美林大学 中生 勝美 17  質疑応答2…33  報告3 地方国立大学史の編纂と旧制官立高等学校関係資料─旧制佐賀高校を中心に─…佐賀大学 永島 広紀 37  報告4 台湾統治関係史資料の現状と今後の課題…中京大学 東山 京子 57  質疑応答4…72  ディスカッション…77  参加者名簿…92  編集後記…広島大学文書館 小池 聖一 94 広島大学文書館研究叢書

    RGMa collapses the neuronal actin barrier against disease-implicated protein and exacerbates ALS

    Get PDF
    Repulsive guidance molecule A (RGMa) was originally identified as a neuronal growth cone–collapsing factor. Previous reports have demonstrated the multifunctional roles of RGMa mediated by neogenin1. However, the pathogenic involvement of RGMa in amyotrophic lateral sclerosis (ALS) remains unclear. Here, we demonstrated that RGMa concentration was elevated in the cerebrospinal fluid of both patients with ALS and transgenic mice overexpressing the mutant human superoxide dismutase1 (mSOD1 mice). Treatment with humanized anti-RGMa monoclonal antibody ameliorated the clinical symptoms in mSOD1 mice. Histochemical analysis revealed that the anti-RGMa antibody significantly decreased mutant SOD1 protein accumulation in the motor neurons of mSOD1 mice via inhibition of actin depolymerization. In vitro analysis revealed that the anti-RGMa antibody inhibited the cellular uptake of the mutant SOD1 protein, presumably by reinforcing the neuronal actin barrier. Collectively, these data suggest that RGMa leads to the collapse of the neuronal actin barrier and promotes aberrant protein deposition, resulting in exacerbation of the ALS pathology.Shimizu Mikito, Shiraishi Naoyuki, Tada Satoru, et al. RGMa collapses the neuronal actin barrier against disease-implicated protein and exacerbates ALS. Science Advances 9, 686 (2023); https://doi.org/10.1126/sciadv.adg3193
    corecore