1,642 research outputs found
Areal Foliation and AVTD Behavior in T^2 Symmetric Spacetimes with Positive Cosmological Constant
We prove a global foliation result, using areal time, for T^2 symmetric
spacetimes with a positive cosmological constant. We then find a class of
solutions that exhibit AVTD behavior near the singularity.Comment: 15 pages, 0 figures, 2 references adde
Yang-Mills Flow and Uniformization Theorems
We consider a parabolic-like systems of differential equations involving
geometrical quantities to examine uniformization theorems for two- and
three-dimensional closed orientable manifolds. We find that in the
two-dimensional case there is a simple gauge theoretic flow for a connection
built from a Riemannian structure, and that the convergence of the flow to the
fixed points is consistent with the Poincare Uniformization Theorem. We
construct a similar system for the three-dimensional case. Here the connection
is built from a Riemannian geometry, an SO(3) connection and two other 1-form
fields which take their values in the SO(3) algebra. The flat connections
include the eight homogeneous geometries relevant to the three-dimensional
uniformization theorem conjectured by W. Thurston. The fixed points of the flow
include, besides the flat connections (and their local deformations), non-flat
solutions of the Yang-Mills equations. These latter "instanton" configurations
may be relevant to the fact that generic 3-manifolds do not admit one of the
homogeneous geometries, but may be decomposed into "simple 3-manifolds" which
do.Comment: 21 pages, Latex, 5 Postscript figures, uses epsf.st
Formal matched asymptotics for degenerate Ricci flow neckpinches
Gu and Zhu have shown that Type-II Ricci flow singularities develop from
nongeneric rotationally symmetric Riemannian metrics on , for all . In this paper, we describe and provide plausibility arguments for a
detailed asymptotic profile and rate of curvature blow-up that we predict such
solutions exhibit
Recommended from our members
Evaluation of Non-photorealistic 3D Urban Models for Mobile Device Navigation.
Fuchsian methods and spacetime singularities
Fuchsian methods and their applications to the study of the structure of
spacetime singularities are surveyed. The existence question for spacetimes
with compact Cauchy horizons is discussed. After some basic facts concerning
Fuchsian equations have been recalled, various ways in which these equations
have been applied in general relativity are described. Possible future
applications are indicated
The Gowdy T3 Cosmologies revisited
We have examined, repeated and extended earlier numerical calculations of
Berger and Moncrief for the evolution of unpolarized Gowdy T3 cosmological
models. Our results are consistent with theirs and we support their claim that
the models exhibit AVTD behaviour, even though spatial derivatives cannot be
neglected. The behaviour of the curvature invariants and the formation of
structure through evolution both backwards and forwards in time is discussed.Comment: 11 pages, LaTeX, 6 figures, results and conclusions revised and
(considerably) expande
Generating Gowdy cosmological models
Using the analogy with stationary axisymmetric solutions, we present a method
to generate new analytic cosmological solutions of Einstein's equation
belonging to the class of Gowdy cosmological models. We show that the
solutions can be generated from their data at the initial singularity and
present the formal general solution for arbitrary initial data. We exemplify
the method by constructing the Kantowski-Sachs cosmological model and a
generalization of it that corresponds to an unpolarized Gowdy model.Comment: Latex, 15 pages, no figure
- …