151 research outputs found

    A cost-effectiveness analysis of self-debriefing versus instructor debriefing for simulated crises in perioperative medicine in Canada.

    Get PDF
    PurposeHigh-fidelity simulation training is effective for learning crisis resource management (CRM) skills, but cost is a major barrier to implementing high-fidelity simulation training into the curriculum. The aim of this study was to examine the cost-effectiveness of self-debriefing and traditional instructor debriefing in CRM training programs and to calculate the minimum willingness-to-pay (WTP) value when one debriefing type becomes more cost-effective than the other.MethodsThis study used previous data from a randomized controlled trial involving 50 anesthesiology residents in Canada. Each participant managed a pretest crisis scenario. Participants who were randomized to self-debrief used the video of their pretest scenario with no instructor present during their debriefing. Participants from the control group were debriefed by a trained instructor using the video of their pretest scenario. Participants individually managed a post-test simulated crisis scenario. We compared the cost and effectiveness of self-debriefing versus instructor debriefing using net benefit regression. The cost-effectiveness estimate was reported as the incremental net benefit and the uncertainty was presented using a cost-effectiveness acceptability curve.ResultsSelf-debriefing costs less than instructor debriefing. As the WTP increased, the probability that self-debriefing would be cost-effective decreased. With a WTP ≤Can200, the self-debriefing program was cost-effective. However, when effectiveness was priced higher than cost-savings and with a WTP >Can300, instructor debriefing was the preferred alternative.ConclusionWith a lower WTP (≤Can$200), self-debriefing was cost-effective in CRM simulation training when compared to instructor debriefing. This study provides evidence regarding cost-effectiveness that will inform decision-makers and clinical educators in their decision-making process, and may help to optimize resource allocation in education

    A systematic review of cost-effectiveness analyses of complex wound interventions reveals optimal treatments for specific wound types.

    Get PDF
    BackgroundComplex wounds present a substantial economic burden on healthcare systems, costing billions of dollars annually in North America alone. The prevalence of complex wounds is a significant patient and societal healthcare concern and cost-effective wound care management remains unclear. This article summarizes the cost-effectiveness of interventions for complex wound care through a systematic review of the evidence base.MethodsWe searched multiple databases (MEDLINE, EMBASE, Cochrane Library) for cost-effectiveness studies that examined adults treated for complex wounds. Two reviewers independently screened the literature, abstracted data from full-text articles, and assessed methodological quality using the Drummond 10-item methodological quality tool. Incremental cost-effectiveness ratios were reported, or, if not reported, calculated and converted to United States Dollars for the year 2013.ResultsOverall, 59 cost-effectiveness analyses were included; 71% (42 out of 59) of the included studies scored 8 or more points on the Drummond 10-item checklist tool. Based on these, 22 interventions were found to be more effective and less costly (i.e., dominant) compared to the study comparators: 9 for diabetic ulcers, 8 for venous ulcers, 3 for pressure ulcers, 1 for mixed venous and venous/arterial ulcers, and 1 for mixed complex wound types.ConclusionsOur results can be used by decision-makers in maximizing the deployment of clinically effective and resource efficient wound care interventions. Our analysis also highlights specific treatments that are not cost-effective, thereby indicating areas of resource savings. Please see related article: http://dx.doi.org/10.1186/s12916-015-0288-5

    Impact of smoking on health system costs among cancer patients in a retrospective cohort study in Ontario, Canada

    Get PDF
    Objective Smoking is the main modifiable cancer risk factor. The objective of this study was to examine the impact of smoking on health system costs among newly diagnosed adult patients with cancer. Specifically, costs of patients with cancer who were current smokers were compared with those of non-smokers from a publicly funded health system perspective. Methods This population-based cohort study of patients with cancer used administrative databases to identify smokers and non-smokers (1 April 2014-31 March 2016) and their healthcare costs in the 12-24 months following a cancer diagnosis. The health services included were hospitalisations, emergency room visits, drugs, home care services and physician services (from the time of diagnosis onwards). The difference in cost (ie, incremental cost) between patients with cancer who were smokers and those who were non-smokers was estimated using a generalised linear model (with log link and gamma distribution), and adjusted for age, sex, neighbourhood income, rurality, cancer site, cancer stage, geographical region and comorbidities. Results This study identified 3606 smokers and 14 911 non-smokers. Smokers were significantly younger (61 vs 65 years), more likely to be male (53%), lived in poorer neighbourhoods, had more advanced cancer stage,and were more likely to die within 1 year of diagnosis, compared with non-smokers. The regression model revealed that, on average, smokers had significantly higher monthly healthcare costs (5091)thannonsmokers(5091) than non-smokers (4847), p<0.05. Conclusions Smoking status has a significant impact on healthcare costs among patients with cancer. On average, smokers incurred higher healthcare costs than non-smokers. These findings provide a further rationale for efforts to introduce evidence-based smoking cessation programmes as a standard of care for patients with cancer as they have the potential not only to improve patients' outcomes but also to reduce the economic burden of smoking on the healthcare system

    Expanding Paramedicine in the Community (EPIC): study protocol for a randomized controlled trial.

    Get PDF
    BackgroundThe incidence of chronic diseases, including diabetes mellitus (DM), heart failure (HF) and chronic obstructive pulmonary disease (COPD) is on the rise. The existing health care system must evolve to meet the growing needs of patients with these chronic diseases and reduce the strain on both acute care and hospital-based health care resources. Paramedics are an allied health care resource consisting of highly-trained practitioners who are comfortable working independently and in collaboration with other resources in the out-of-hospital setting. Expanding the paramedic's scope of practice to include community-based care may decrease the utilization of acute care and hospital-based health care resources by patients with chronic disease.Methods/designThis will be a pragmatic, randomized controlled trial comparing a community paramedic intervention to standard of care for patients with one of three chronic diseases. The objective of the trial is to determine whether community paramedics conducting regular home visits, including health assessments and evidence-based treatments, in partnership with primary care physicians and other community based resources, will decrease the rate of hospitalization and emergency department use for patients with DM, HF and COPD. The primary outcome measure will be the rate of hospitalization at one year. Secondary outcomes will include measures of health system utilization, overall health status, and cost-effectiveness of the intervention over the same time period. Outcome measures will be assessed using both Poisson regression and negative binomial regression analyses to assess the primary outcome.DiscussionThe results of this study will be used to inform decisions around the implementation of community paramedic programs. If successful in preventing hospitalizations, it has the ability to be scaled up to other regions, both nationally and internationally. The methods described in this paper will serve as a basis for future work related to this study.Trial registrationClinicalTrials.gov: NCT02034045. Date: 9 January 2014
    corecore