4 research outputs found

    Understanding the Dynamics of Ancillary Pelagic Species in the Adriatic Sea

    Get PDF
    The status of fishery resources in the Mediterranean Sea is critical: most of the fish and shellfish stocks are in overexploitation and only half of them are routinely assessed. This manuscript presents the use of Surplus Production Models (SPMs) as a valid option to increase the number of assessed stocks, with specific attention to the Adriatic basin. Particularly, the stock of European sprat (Sprattus sprattus), Mediterranean horse mackerel (Trachurus mediterraneus), and Atlantic horse mackerel (Trachurus trachurus) living in the Adriatic Sea have been evaluated comparing three SPMs: Catch Maximum Sustainable Yields (CMSY), Stochastic surplus Production model in Continuous Time (SPiCT), and Abundance Maximum Sustainable Yields (AMSY). The different approaches present some variations; however, they generally agree on describing all the stocks close to the reference values for both biomass and fishing mortality in the most recent year. For the European sprat, AMSY results are the most robust model for this species’ survey data allow depicting a clearer picture of the history of this stock. Indeed, for the horse mackerel species, CMSY or SPiCT results are the preferred models, since for these species landings are not negligible. Notwithstanding, age-structured assessments remain the most powerful approach for evaluating the status of resources, but SPMs have proved to be a powerful tool in a data-limited context

    Spatial distribution pattern of European hake Merluccius merluccius (Pisces: Merlucciidae) in the Mediterranean Sea

    Get PDF
    The present study provides updated information on the occurrence, abundance and biomass distribution patterns and length frequencies of Merluccius merluccius in the Mediterranean Sea, by analysing a time series of data from the Medi- terranean International Trawl Surveys (MEDITS) from 1994 to 2015. The highest values of abundance and biomass were observed in the Sardinian Seas. The use of a generalized additive model, in which standardized biomass indices (kg km–2) were analysed as a function of environmental variables, explained how ecological factors could affect the spatio-temporal distribution of European hake biomass in the basin. High biomass levels predicted by the model were observed especially at 200 m depth and between 14°C and 18°C, highlighting the preference of the species for colder waters. A strong reduction of biomass was observed since the year 2009, probably due to the strengthening of the seasonal thermocline that had greatly reduced the availability of food. The general decrease in biomass of several stocks of anchovy and sardine, preys of European hake, might be indirectly connected to the decreasing biomass detected in the present study. The length analysis shows me- dian values lower than 200 mm total length of most of the investigated areas

    Spatial variability of Chondrichthyes in the Mediterranean

    Get PDF
    Thanks to the availability of the MEDITS survey data, a standardized picture of the occurrence and abundance of demersal Chondrichthyes in the northern Mediterranean has been obtained. During the spring-summer period between 2012 and 2015, 41 Chondrichthyes, including 18 sharks (5 orders and 11 families), 22 batoids (3 orders and 4 families) and 1 chimaera, were detected from several geographical sub-areas (GSAs) established by the General Fisheries Commission for the Mediterranean. Batoids had a preferential distribution on the continental shelf (10-200 m depth), while shark species were more frequent on the slope (200-800 m depth). Only three species, the Carcharhiniformes Galeus melastomus and Scylio-rhinus canicula and the Torpediniformes Torpedo marmorata were caught in all GSAs studied. On the continental shelf, the Rajidae family was the most abundant, being represented in primis by Raja clavata and then by R. miraletus, R. polystigmaand R. asterias. The slope was characterized by the prevalence of G. melastomus in all GSAs, followed by S. canicula, E. spinax and Squalus blainville. Areas under higher fishing pressure, such as the Adriatic Sea and the Spanish coast (with the exception of the Balearic Islands), show a low abundance of chondrichthyans, but other areas with a high level of fishing pressure, such as southwestern Sicily, show a high abundance, suggesting that other environmental drivers work together with fishing pressure to shape their distribution. Results of generalized additive models highlighted that depth is one of the most important environmental drivers influencing the distribution of both batoid and shark species, although temperature also showed a significant influence on their distribution. The approach explored in this work shows the possibility of producing maps modelling the distribution of demersal chondrichthyans in the Mediterranean that are useful for the management and conservation of these species at a regional scale. However, because of the vulnerability of these species to fishing exploita-tion, fishing pressure should be further incorporated in these models in addition to these environmental drivers

    Spatio-temporal trends in diversity of demersal fish assemblages in the Mediterranean

    No full text
    The high species richness, coupled with high proportion of endemism, makes the Mediterranean one of the world’s ‘biodiversity hotspots’. However, the continuous increase in fisheries in the last few decades has led to the overexploitation of their main commercial stocks. Using fishery-independent data collected under the framework of the MEDITS trawl surveys carried out over the last 20 years, we study the demersal fish diversity pattern in the Mediterranean at a large spatial and temporal scale to determine whether it is being affected by the general fishing overexploitation of the demersal resources. The detected diversity trends are compared with the spatio-temporal variation in bottom trawl fishing effort in the Mediterranean. Our results show a stability and even recovery of demersal fish diversity in the Mediterranean together with higher diversity values on the continental shelves of the Balearic Islands, Sardinia, Sicily and the Aegean Sea. At large temporal and spatial scales, the high diversity of demersal assemblages in the Mediterranean is associated with a reduction in bottom trawl fishing effort. The inclusion of species other than target ones through diversity indices is important in the implementation of an ecosystem-based fisheries management
    corecore