10 research outputs found

    A two-decade analysis of the spatial and temporal variations in burned areas across Zimbabwe

    Get PDF
    Understanding wildfire dynamics in space and over time is critical for wildfire control and management. In this study, fire data from European Space Agency (ESA) MODIS fire product (ESA/CCI/FireCCI/5_1) with ≄ 70% confidence level was used to characterise spatial and temporal variation in fire frequency in Zimbabwe between 2001 and 2020. Results showed that burned area increased by 16% from 3,689 km2 in 2001 to 6,130 km2 in 2011 and decreased in subsequent years reaching its lowest in 2020 (1,161km2). Over, the 20-year period, an average of 40,086.56 km2 of land was burned annually across the country. In addition, results of the regression analysis based on Generalised Linear Model illustrated that soil moisture, wind speed and temperature significantly explained variation in burned area. Moreover, the four-year lagged annual rainfall was positively related with burned area suggesting that some parts in the country (southern and western) are characterised by limited herbaceous production thereby increasing the time required for the accumulation of sufficient fuel load. The study identified major fire hotspots in Zimbabwe through the integration of remotely sensed fire data within a spatially analytical framework. This can provide useful insights into fire evolution which can be used to guide wildfire control and management in fire prone ecosystems. Moreover, resource allocation for fire management and mitigation can be optimised through targeting areas most affected by wildfires especially during the dry season where wildfire activity is at its peak

    Spatial modelling of wildfire hotspots and their key drivers across districts of Zimbabwe, Southern Africa

    No full text
    Understanding spatial patterns of wildfire hotspots and cold spots as well as their key drivers is important for designing appropriate fire management strategies. This study tested the extent to which wildfires cluster in Zimbabwe before assessing important determinants of wildfire clusters. Optimised Hotspot analysis was applied to detect significant wildfire hotspots and cold spots in Zimbabwe. Key determinants of wildfire hotspots were determined using spatial lag regression. Results show that wildfire hotspots are concentrated in the northern districts of the country while cold spots are prevalent in the central, eastern, southern as well as western districts. The study identified distance from settlements, dry matter productivity, mean annual temperature and slope as key drivers of wildfire hotspots and cold spots. Our results underscore the importance of adopting spatial analytical techniques in modelling wildfire hotspots as a first step towards developing sustainable wildfire management strategies and policies

    Spatial overlaps in the distribution of HIV/AIDS and malaria in Zimbabwe

    No full text
    Abstract Background In most developing economies particularly in Africa, more people are likely to die of HIV/AIDS and malaria compared to other diseases. HIV/AIDS tends to be superimposed on the long standing malaria burden particularly in sub-Saharan Africa. The detection and understanding of spatial overlaps in disease occurrence is important for integrated and targeted disease control. Integrated disease control can enhance efficiency and cost-effectiveness through the development of drugs targeting multiple infections in the same geographic space. Methods Using Zimbabwe as a case study, this study tests the hypothesis that malaria clusters coincide with HIV/AIDS clusters in space. Case data for the two diseases were obtained from the Ministry of Health and Child Care in Zimbabwe at district level via the District Health Information System (DHIS). Kulldorff’s spatial scan statistic was used to test for spatial overlaps in clusters of high cases of HIV/AIDS and malaria at district level. The spatial scan test was used to identify areas with higher cases of HIV/AIDS and malaria than would be expected under spatial randomness. Results Results of this study indicate that primary clusters of HIV/AIDS and malaria were not spatially coincident in Zimbabwe. While no spatial overlaps were detected between primary clusters of the two diseases, spatial overlaps were detected among statistically significant secondary clusters of HIV/AIDS and malaria. Spatial overlaps between HIV/AIDS and malaria occurred in five districts in the northern and eastern regions of Zimbabwe. In addition, findings of this study indicate that HIV/AIDS is more widespread in Zimbabwe compared to malaria. Conclusions The results of this study may therefore be used as a basis for spatially-targeted control of HIV/AIDS and malaria particularly in high disease burden areas. This is important as previous interventions have targeted the two diseases separately. Thus, targeted control could assist in resource allocation through prioritising areas in greatest need hence maximising the impact of disease control

    Comparison of GARP and Maxent in modelling the geographic distribution of Bacillus anthracis in Zimbabwe

    No full text
    A number of presence-only models can be used in the prediction of the geographic distribution of diseases and/or their vectors. The predictive performance of these models differs depending on a number of factors but primarily the modeled species’ ecological traits. In this study, the performance of GARP and Maxent, two of the most commonly used modelling methods were compared in predicting presence and absence of anthrax in Zimbabwe using accuracy, sensitivity, specificity, Kappa statistic and the Jaccard coefficient as measures of model performance. The results showed that GARP had higher accuracy than Maxent (GARP = 0.70, Maxent = 0.67). Both methods had equal sensitivity (sensitivity = 0.71), but GARP had higher specificity (GARP=0.70, Maxent=0.67). Both Kappa and the Jaccard coefficient were also higher for GARP (0.335; 0.36) than for Maxent (0.295; 0.34). The results imply that GARP has superior performance over Maxent and is recommended for modelling species habitat suitability.Keywords: ENMs, GARP, Maxent, Anthra

    Modelling climate change impacts on the spatial distribution of anthrax in Zimbabwe

    No full text
    Abstract Background In Zimbabwe, anthrax is endemic with outbreaks being reported almost annually in livestock, wildlife, and humans over the past 40 years. Accurate modelling of its spatial distribution is key in formulating effective control strategies. In this study, an Ensemble Species Distribution Model was used to model the current and future distribution of anthrax occurrence in Zimbabwe. Methods Bioclimatic variables derived from the Beijing Climate Centre Climate System Model were used to model the disease. Collinearity testing was conducted on the 19 bioclimatic variables and elevation to remove redundancy. Variables that had no collinearity were used for anthrax habitat suitability modelling. Two future climate change scenarios for different Representative Concentration Pathways (RCP), RCP4.5 and RCP8.5 were used. Model evaluation was done using true skill, Kappa statistics and receiver operating characteristics. Results The results showed that under current bioclimatic conditions, eastern and western districts of Zimbabwe were modelled as highly suitable, central districts moderately suitable and southern parts marginally suitable for anthrax occurrence. Future predictions demonstrated that the suitable (8%) and highly suitable (7%) areas for anthrax occurrence would increase under RCP4.5 scenario. In contrast, a respective decrease (11%) and marginal increase (0.6%) of suitable and highly suitable areas for anthrax occurrence were predicted under the RCP8.5 scenario. The percentage contribution of the predictors varied for the different scenarios; Bio6 and Bio18 for the current scenario, Bio2, Bio4 and Bio9 for the RCP4.5 and Bio3 and Bio15 for the RCP8.5 scenarios. Conclusions The study revealed that areas currently suitable for anthrax should be targeted for surveillance and prevention. The predicted future anthrax distribution can be used to guide and prioritise surveillance and control activities and optimise allocation of limited resources. In the marginally to moderately suitable areas, effective disease surveillance systems and awareness need to be put in place for early detection of outbreaks. Targeted vaccinations and other control measures including collaborative ‘One Health’ strategies need to be implemented in the predicted highly suitable areas. In the southern part where a high decrease in suitability was predicted, continued monitoring would be necessary to detect incursions early

    GIS-based stratification of malaria risk zones for Zimbabwe

    No full text
    Malaria burden has considerably declined in the last 15 years mainly due to large-scale vector control. The continued decline can be sustained through malaria risk stratification. Malaria stratification is the classification of geographical areas according to malaria risk. In this study, ecological niche modelling using the maximum entropy algorithm was applied to predict malaria vector habitat suitability in terms of bioclimatic and topographic variables. The output vector suitability map was integrated with malaria prevalence data in a GIS to stratify Zimbabwe into different malaria risk zones. Five improved and validated malaria risk zones were successfully delimited for Zimbabwe based on the World Health Organization classification scheme. These results suggest that the probability of occurrence of major vectors of malaria is a key determinant of malaria prevalence. The delimited malaria risk zones could be used by National Malaria Control programmes to plan and implement targeted malaria interventions based on vector control

    Spatial distribution of Mycobacterium Tuberculosis in metropolitan Harare, Zimbabwe.

    No full text
    IntroductionThe contribution of high tuberculosis (TB) transmission pockets in propagating area-wide transmission has not been adequately described in Zimbabwe. This study aimed to describe the presence of hotspot transmission of TB cases in Harare city from 2011 to 2012 using geospatial techniques.MethodsAnonymised TB patient data stored in an electronic database at Harare City Health department was analysed using geospatial methods. Confirmed TB cases were mapped using geographic information system (GIS). Global Moran's I and Anselin Local Moran's I (LISA) were used to assess clustering and the local Getis-Ord Gi* was used to estimate hotspot phenomenon of TB cases in Harare City for the period between 2011 and 2012.ResultsA total of 12,702 TB cases were accessed and mapped on the Harare City map. In both 2011 and 2012, ninety (90%) of cases were new and had a high human immunodeficiency virus (HIV)/TB co-infection rate of 72% across all suburbs. Tuberculosis prevalence was highest in the Southern district in both 2011 and 2012. There were pockets of spatial distribution of TB prevalence across West South West, Southern, Western, South Western and Eastern health districts. TB hot spot occurrence was restricted to the West South West, parts of South Western, Western health districts. West South West district had an increased peri-urban population with inadequate social services including health facilities. These conditions were conducive for increased intensity of TB occurrence, a probable indication of high transmission especially in the presence of high HIV co-infection.Conclusions and recommendationsIncreased TB transmission was limited to a health district with high informal internal migrants with limited health services in Harare City. To minimise spread of TB into greater Harare, there is need to improve access to TB services in the peri-urban areas
    corecore