16 research outputs found

    Suppression of Epithelial to Mesenchymal Transitioning (EMT) Enhances Ex Vivo Reprogramming of Human Exocrine Pancreatic Tissue towards Functional Insulin Producing β-Like Cells

    Get PDF
    Because of the lack of tissue available for islet transplantation, new sources of β-cells have been sought for the treatment of type 1 diabetes. The aim of this study was to determine whether the human exocrine-enriched fraction from the islet isolation procedure could be reprogrammed to provide additional islet tissue for transplantation. The exocrine-enriched cells rapidly dedifferentiated in culture and grew as a mesenchymal monolayer. Genetic lineage tracing confirmed that these mesenchymal cells arose, in part, through a process of epithelial-to-mesenchymal transitioning (EMT). A protocol was developed whereby transduction of these mesenchymal cells with adenoviruses containing Pdx1, Ngn3, MafA, and Pax4 generated a population of cells that were enriched in glucagon-secreting α-like cells. Transdifferentiation or reprogramming toward insulin-secreting β-cells was enhanced, however, when using unpassaged cells in combination with inhibition of EMT by inclusion of Rho-associated kinase (ROCK) and transforming growth factor-β1 inhibitors. Resultant cells were able to secrete insulin in response to glucose and on transplantation were able to normalize blood glucose levels in streptozotocin diabetic NOD/SCID mice. In conclusion, reprogramming of human exocrine-enriched tissue can be best achieved using fresh material under conditions whereby EMT is inhibited, rather than allowing the culture to expand as a mesenchymal monolayer

    Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population

    Get PDF
    Tumor-associated macrophages (TAM) are exposed to multiple microenvironmental cues in tumors, which collaborate to endow these cells with protumoral activities. Hypoxia, caused by an imbalance in oxygen supply and demand because of a poorly organized vasculature, is often a prominent feature in solid tumors. However, to what extent tumor hypoxia regulates the TAM phenotype in vivo is unknown. Here, we show that the myeloid infiltrate in mouse lung carcinoma tumors encompasses two morphologically distinct CD11b(hi)F4/80(hi)Ly6C(lo) TAM subsets, designated as MHC-II(lo) and MHC-II(hi) TAM, both of which were derived from tumor-infiltrating Ly6C(hi) monocytes. MHC-II(lo) TAM express higher levels of prototypical M2 markers and reside in more hypoxic regions. Consequently, MHC-II(lo) TAM contain higher mRNA levels for hypoxia-regulated genes than their MHC-II(hi) counterparts. To assess the in vivo role of hypoxia on these TAM features, cancer cells were inoculated in prolyl hydroxylase domain 2 (PHD2)-haplodeficient mice, resulting in better-oxygenated tumors. Interestingly, reduced tumor hypoxia did not alter the relative abundance of TAM subsets nor their M2 marker expression, but specifically lowered hypoxia-sensitive gene expression and angiogenic activity in the MHC-II(lo) TAM subset. The same observation in PHD2(+/+) → PHD2(+/-) bone marrow chimeras also suggests organization of a better-oxygenized microenvironment. Together, our results show that hypoxia is not a major driver of TAM subset differentiation, but rather specifically fine-tunes the phenotype of M2-like MHC-II(lo) TAM

    The Quest for Tissue Stem Cells in the Pancreas and Other Organs, and their Application in Beta-Cell Replacement

    No full text
    Adult stem cell research has drawn a lot of attention by many researchers, due to its medical hope of cell replacement or regenerative therapy for diabetes patients. Despite the many research efforts to date, there is no consensus on the existence of stem cells in adult pancreas. Genetic lineage tracing experiments have put into serious doubt whether β-cell neogenesis from stem/progenitor cells takes place postnatally. Different in vitro experiments have suggested centroacinar, ductal, acinar, stellate, or yet unidentified clonigenic cells as candidate β-cell progenitors. As in the rest of the adult stem cell field, sound and promising observations have been made. However, these observations still need to be replicated. As an alternative to committed stem/progenitor cells in the pancreas, transdifferentiation or lineage reprogramming of exocrine acinar and endocrine α-cells may be used to generate new β-cells. At present, it is unclear which approach is most medically promising. This article highlights the progress being made in knowledge about tissue stem cells, their existence and availability for therapy in diabetes. Particular attention is given to the assessment of methods to verify the existence of tissue stem cells

    Gene delivery to pancreatic exocrine cells in vivo and in vitro

    Get PDF
    International audienceBackgroundEffective gene transfer to the pancreas or to pancreatic cells has remained elusive although it is essential for studies of genetic lineage tracing and modulation of gene expression. Different transduction methods and viral vectors were tested in vitro and in vivo, in rat and mouse pancreas.ResultsFor in vitro transfection/transduction of rat exocrine cells lipofection reagents, adenoviral vectors, and Mokola- and VSV-G pseudotyped lentiviral vectors were used. For in vivo transduction of mouse and rat pancreas adenoviral vectors and VSV-G lentiviral vectors were injected into the parenchymal tissue. Both lipofection of rat exocrine cell cultures and transduction with Mokola pseudotyped lentiviral vectors were inefficient and resulted in less than 4% EGFP expressing cells. Adenoviral transduction was highly efficient but its usefulness for gene delivery to rat exocrine cells in vitro was hampered by a drastic increase in cell death. In vitro transduction of rat exocrine cells was most optimal with VSV-G pseudotyped lentiviral vectors, with stable transgene expression, no significant effect on cell survival and about 40% transduced cells. In vivo, pancreatic cells could not be transduced by intra-parenchymal administration of lentiviral vectors in mouse and rat pancreas. However, a high efficiency could be obtained by adenoviral vectors, resulting in transient transduction of mainly exocrine acinar cells. Injection in immune-deficient animals diminished leukocyte infiltration and prolonged transgene expression.ConclusionsIn summary, our study remarkably demonstrates that transduction of pancreatic exocrine cells requires lentiviral vectors in vitro but adenoviral vectors in vivo

    Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of β-cell neogenesis

    No full text
    Synopsis The regenerative medicine field is expanding with great successes in laboratory and preclinical settings. Pancreatic acinar cells in diabetic mice were recently converted into β-cells by treatment with ciliary neurotrophic factor (CNTF) and epidermal growth factor (EGF). This suggests that human acinar cells might become a cornerstone for diabetes cell therapy in the future, if they can also be converted into glucose-responsive insulin-producing cells. Presently, studying pancreatic acinar cell biology in vitro is limited by their high plasticity, as they rapidly lose their phenotype and spontaneously transdifferentiate to a duct-like phenotype in culture. We questioned whether human pancreatic acinar cell phenotype could be preserved in vitro by physico-chemical manipulations and whether this could be valuable in the study of β-cell neogenesis. We found that culture at low temperature (4 • C) resulted in the maintenance of morphological and molecular acinar cell characteristics. Specifically, chilled acinar cells did not form the spherical clusters observed in controls (culture at 37 • C), and they maintained high levels of acinar-specific transcripts and proteins. Five-day chilled acinar cells still transdifferentiated into duct-like cells upon transfer to 37 • C. Moreover, adenoviral-mediated gene transfer evidenced an active Amylase promoter in the 7-day chilled acinar cells, and transduction performed in chilled conditions improved acinar cell labelling. Together, our findings indicate the maintenance of human pancreatic acinar cell phenotype at low temperature and the possibility to efficiently label acinar cells, which opens new perspectives for the study of human acinar-to-β-cell transdifferentiation

    Do cancer centres and palliative care wards routinely measure patients’ quality of life? An international cross-sectional survey study

    No full text
    PurposeRoutinely assessing quality of life (QoL) of patients with cancer is crucial for improving patient-centred cancer care. However, little is known about whether or how cancer centres assess QoL for clinical practice or for research purposes. Therefore, our study aimed to investigate if QoL data is collected and if so, how and for what purposes.MethodWe conducted a cross-sectional survey study among 32 cancer centres in Europe and Canada. Centre representatives identified persons who they judged to have sufficient insight into QoL data collections in their wards to complete the survey. Descriptive statistics were used to summarise the information on QoL assessment and documentation.ResultsThere were 20 (62.5%) responding cancer centres. In total, 30 questionnaires were completed, of which 13 were completed for cancer wards and 17 for palliative care wards. We found that 23.1% and 38.5% of the cancer wards routinely assessed QoL among inpatients and outpatients with cancer, respectively, whereas, in palliative care wards, 52.9% assessed QoL for outpatients with cancer and 70.6% for the inpatients. Wide variabilities were observed between the cancer centres in how, how often, when and which instruments they used to assess QoL.ConclusionA sizable proportion of the cancer wards, especially, and palliative care wards apparently does not routinely assess patients' QoL, and we found wide variabilities between the cancer centres in how they do it. To promote routine assessment of patients' QoL, we proposed several actions, such as addressing barriers to implementing patient-reported outcome measures through innovative e-health platforms
    corecore