37 research outputs found

    Stakeholder engagement in the development of genetically modified mosquitoes for malaria control in West Africa: lessons learned from 10 years of Target Malaria’s work in Mali

    Get PDF
    From 2012 to 2023, the Malaria Research and Training Center (MRTC), based out of the University of Sciences, Techniques and Technologies of Bamako (USTTB), was part of the Target Malaria research consortium working towards developing novel gene drive-based tools for controlling populations of malaria vector mosquitoes. As part of this work, Target Malaria Mali has undertaken a range of in-depth engagement activities with the communities where their research is conducted and with other stakeholders nationally. These activities were meant to ensure that the project’s activities took place with the agreement of those communities, and that those communities were able to play a role in shaping the project’s approach to ensure that its eventual outcomes were in line with their needs and concerns. This paper aims to conduct a critical assessment of those 10 years of stakeholder engagement in order to identify good practices which can inform future engagement work on gene drive research in West Africa. It sets out a range of approaches and practices that enabled the Target Malaria Mali team to engage a variety of stakeholders, to share information, collect feedback, and determine community agreement, in a manner that was inclusive, effective, and culturally appropriate. These can be useful tools for those working on gene drive research and other area-wide vector control methods in West African contexts to ensure that their research is aligned with the interests of the communities who are intended to be its ultimate beneficiaries, and to allow those communities to play a meaningful role in the research process

    Intended Consequences Statement in Conservation Science and Practice

    Get PDF
    As the biodiversity crisis accelerates, the stakes are higher for threatened plants and animals. Rebuilding the health of our planet will require addressing underlying threats at many scales, including habitat loss and climate change. Conservation interventions such as habitat protection, management, restoration, predator control, trans location, genetic rescue, and biological control have the potential to help threatened or endangered species avert extinction. These existing, well-tested methods can be complemented and augmented by more frequent and faster adoption of new technologies, such as powerful new genetic tools. In addition, synthetic biology might offer solutions to currently intractable conservation problems. We believe that conservation needs to be bold and clear-eyed in this moment of great urgency

    Providing a policy framework for responsible gene drive research: an analysis of the existing governance landscape and priority areas for further research

    No full text
    The progress in gene drive research has made the possibility of a future release in the environment probable. This prospect is raising new questions related to the adequacy of the policy frameworks in place to manage and regulate the research and its outcomes responsibly. A number of international mechanisms are exploring how to evaluate this technology. Amongst them, the Convention of Biological Diversity and the Cartagena Protocol, the review mechanisms of the World Health Organisation, and the International Union for Conservation of Nature are offering international fora for dialogue, while regional entities, such as the African Union, are developing specific frameworks to build their preparedness for oversight of gene drive organisms. In this manuscript, we review the existing regulatory landscape around gene drive research and map areas of convergence and divergence, as well as gaps in relation to guidelines for community engagement in gene drive research.</ns4:p

    Interfacial and micellar behaviour of pyrrole-containing surfactants

    No full text
    International audienceThe physicochemical properties of new electropolymerisable cationic surfactants having a pyrrolyl group attached and unusual counterions have been studied in aqueous solutions and at the air-water interface. The tetrafluoroborate and tosylate anions behave as quite hydrophobic counterions as compared to the conventional bromide. The pyrrolyl group of moderate polarity has a dual behaviour: it behaves as a hydrophobic substituent when it is attached close to the polar head of the surfactants, but its low polarity manifests when it is attached to the end of the hydrophobic chain. Thus, the presence of the pyrrolyl group at the chain end does not affect the cmc value. The pyrrole ring was found located at the micellar surface in the dilute regime; the resulting folding of the hydrophobic chain induces a strong curvature of the interface; small and spherical micelles are formed. A concentrated regime is reached where the interfacial curvature is reduced: the micelles progressively grow in size and change their shape into elongated ellipsoids. The increasing lateral interactions at the level of the headgroups expel the pyrrolyl groups into the hydrophobic micellar core

    Taking stock: Is gene drive research delivering on its principles? [version 1; peer review: 1 approved, 2 approved with reservations]

    Get PDF
    Gene drive technology has been recognized for its potential to provide durable and cost-effective solutions for previously intractable problems in public health, conservation, and agriculture. In recognition of the rapid advances in this field, in 2016 the U.S. National Academies of Sciences, Engineering, and Medicine issued a report making several recommendations aimed at researchers, funders, and policymakers for the safe and responsible research and development of gene drive technology. Subsequently, in 2017 sixteen global organizations self-identifying as sponsors and supporters of gene drive research became public signatories committed to the ‘Principles for Gene Drive Research’ which were inspired by the report’s recommendations. Herein we reflect on the progress of gene drive research in relation to the ethical principles laid out and committed to by the signatories to the Principles. Our analysis indicates high levels of alignment with the Principles in the field of gene drive research. The manuscript also discusses the Gene Drive Research Forum, which had its genesis in the publication of the Principles. Discussions between participants at the latest meeting of the Forum point to the work that lies ahead for gene drive research in line with the Principles. Going forward the gene drive research community can productively focus on: i) safety and efficacy criteria for open release, ii) risk assessment frameworks and methods, iii) more downstream technical, regulatory and policy considerations for field evaluations and implementation, iv) continued transparency and developing mechanisms of accountability, and v) strengthening capacity in locales of potential release and expected drive spread

    Effects of Hormones on Breast Development and Breast Cancer Risk in Transgender Women

    No full text
    Transgender women experience gender dysphoria due to a gender assignment at birth that is incongruent with their gender identity. Transgender people undergo different surgical procedures and receive sex steroids hormones to reduce psychological distress and to induce and maintain desired physical changes. These persons on feminizing hormones represent a unique population to study the hormonal effects on breast development, to evaluate the risk of breast cancer and perhaps to better understand the precise role played by different hormonal components. In MTF (male to female) patients, hormonal treatment usually consists of antiandrogens and estrogens. Exogenous hormones induce breast development with the formation of ducts and lobules and an increase in the deposition of fat. A search of the existing literature dedicated to hormone regimens for MTF patients, their impact on breast tissue (incidence and type of breast lesions) and breast cancer risk provided the available information for this review. The evaluation of breast cancer risk is currently complicated by the heterogeneity of administered treatments and a lack of long-term follow-up in the great majority of studies. Large studies with longer follow-up are required to better evaluate the breast cancer risk and to understand the precise mechanisms on breast development of each exogenous hormone

    Effects of Hormones on Breast Development and Breast Cancer Risk in Transgender Women.

    No full text
    Transgender women experience gender dysphoria due to a gender assignment at birth that is incongruent with their gender identity. Transgender people undergo different surgical procedures and receive sex steroids hormones to reduce psychological distress and to induce and maintain desired physical changes. These persons on feminizing hormones represent a unique population to study the hormonal effects on breast development, to evaluate the risk of breast cancer and perhaps to better understand the precise role played by different hormonal components. In MTF (male to female) patients, hormonal treatment usually consists of antiandrogens and estrogens. Exogenous hormones induce breast development with the formation of ducts and lobules and an increase in the deposition of fat. A search of the existing literature dedicated to hormone regimens for MTF patients, their impact on breast tissue (incidence and type of breast lesions) and breast cancer risk provided the available information for this review. The evaluation of breast cancer risk is currently complicated by the heterogeneity of administered treatments and a lack of long-term follow-up in the great majority of studies. Large studies with longer follow-up are required to better evaluate the breast cancer risk and to understand the precise mechanisms on breast development of each exogenous hormone
    corecore