34 research outputs found

    Monensin inhibits the expression of sucrase-isomaltase in Caco-2 cells at the mRNA level

    Get PDF
    AbstractUsing L-[35S]methionine labeling, SDS-PAGE and Northern blot analysis of sucrase-isomaltase mRNA, two different concentrations of monensin were used to delineate in Caco-2 cells the effect of the drug on the conversion of the high mannose to the complex form of sucrase-isomaltase from its dual effect on the biosynthesis of the enzyme and on the rate of glucose consumption. At 0.1 μM the drug has no effect on the rate of glucose consumption and, although it inhibits the conversion of the high mannose to the complex form of the enzyme, it has no effect on the level of sucrase-isomaltase mRNA and on the amount of neosynthesized enzyme. At 1 μM, in addition to its inhibiting effect on the maturation of the enzyme, monensin provokes concomitantly an increase in the rate of glucose consumption and a decrease in the level of sucrase-isomaltase mRNA and in the amount of neosynthesized enzyme. All these effects are reversible within 48 h after removal of the drug

    Bacterial lipid II analogs : novel in vitro substrates for mammalian oligosaccharyl diphosphodolichol diphosphatase (DLODP) activities

    Get PDF
    Mammalian protein N-glycosylation requires the transfer of an oligosaccharide containing 2 residues of N-acetylglucosamine, 9 residues of mannose and 3 residues of glucose (Glc3Man9 GlcNAc2) from Glc3Man9GlcNAc2-diphospho (PP)-dolichol (DLO) onto proteins in the endoplasmic reticulum (ER). Under some pathophysiological conditions, DLO biosynthesis is perturbed, and truncated DLO is hydrolyzed to yield oligosaccharyl phosphates (OSP) via unidentified mechanisms. DLO diphosphatase activity (DLODP) was described in vitro, but its characterization is hampered by a lack of convenient non-radioactive substrates. Our objective was to develop a fluorescence-based assay for DLO hydrolysis. Using a vancomycin-based solid-phase extraction procedure coupled with thin layer chromatography (TLC) and mass spectrometry, we demonstrate that mouse liver membrane extracts hydrolyze fluorescent bacterial lipid II (LII: GlcNAc-MurNAc(dansyl-pentapeptide)-PP-undecaprenol) to yield GlcNAc-MurNAc(dansyl-pentapeptide)-P (GM5P). GM5P production by solubilized liver microsomal proteins shows similar biochemical characteristics to those reported for human hepatocellular carcinoma HepG2 cell DLODP activity. To conclude, we show, for the first time, hydrolysis of lipid II by a eukaryotic enzyme. As LII and DLO are hydrolyzed by the same, or closely related, enzymes, fluorescent lipid II analogs are convenient non-radioactive substrates for investigating DLODP and DLODP-like activities

    The Compartmentalisation of Phosphorylated Free Oligosaccharides in Cells from a CDG Ig Patient Reveals a Novel ER-to-Cytosol Translocation Process

    Get PDF
    BACKGROUND: Biosynthesis of the dolichol linked oligosaccharide (DLO) required for protein N-glycosylation starts on the cytoplasmic face of the ER to give Man(5)GlcNAc(2)-PP-dolichol, which then flips into the ER for further glycosylation yielding mature DLO (Glc(3)Man(9)GlcNAc(2)-PP-dolichol). After transfer of Glc(3)Man(9)GlcNAc(2) onto protein, dolichol-PP is recycled to dolichol-P and reused for DLO biosynthesis. Because de novo dolichol synthesis is slow, dolichol recycling is rate limiting for protein glycosylation. Immature DLO intermediates may also be recycled by pyrophosphatase-mediated cleavage to yield dolichol-P and phosphorylated oligosaccharides (fOSGN2-P). Here, we examine fOSGN2-P generation in cells from patients with type I Congenital Disorders of Glycosylation (CDG I) in which defects in the dolichol cycle cause accumulation of immature DLO intermediates and protein hypoglycosylation. METHODS AND PRINCIPAL FINDINGS: In EBV-transformed lymphoblastoid cells from CDG I patients and normal subjects a correlation exists between the quantities of metabolically radiolabeled fOSGN2-P and truncated DLO intermediates only when these two classes of compounds possess 7 or less hexose residues. Larger fOSGN2-P were difficult to detect despite an abundance of more fully mannosylated and glucosylated DLO. When CDG Ig cells, which accumulate Man(7)GlcNAc(2)-PP-dolichol, are permeabilised so that vesicular transport and protein synthesis are abolished, the DLO pool required for Man(7)GlcNAc(2)-P generation could be depleted by adding exogenous glycosylation acceptor peptide. Under conditions where a glycotripeptide and neutral free oligosaccharides remain predominantly in the lumen of the ER, Man(7)GlcNAc(2)-P appears in the cytosol without detectable generation of ER luminal Man(7)GlcNAc(2)-P. CONCLUSIONS AND SIGNIFICANCE: The DLO pools required for N-glycosylation and fOSGN2-P generation are functionally linked and this substantiates the hypothesis that pyrophosphatase-mediated cleavage of DLO intermediates yields recyclable dolichol-P. The kinetics of cytosolic fOSGN2-P generation from a luminally-generated DLO intermediate demonstrate the presence of a previously undetected ER-to-cytosol translocation process for either fOSGN2-P or DLO

    Identification of Roles for Peptide: N-Glycanase and Endo-β-N-Acetylglucosaminidase (Engase1p) during Protein N-Glycosylation in Human HepG2 Cells

    Get PDF
    BACKGROUND: During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo beta-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. METHODS/PRINCIPAL FINDINGS: During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Delta deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man(8)GlcNAc(2), corresponding to approximately 70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc(1)Man(9)GlcNAc(2) and Man(9)GlcNAc(2) that corresponds to approximately 30% of total fOS. CONCLUSIONS/SIGNIFICANCE: As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming

    Nouvelles fonctions de la peptide

    No full text
    La première fonction qui a été attribuée à la peptide N-glycanase (PNGase) est de déglycosyler les N-glycosylprotéines mal repliées avant leur dégradation par le protéasome. Il s’avère cependant que l’inhibition de cette enzyme modifie peu le taux de dégradation de ces N-glycosylprotéines. Des données récentes montrent que cette enzyme a également la capacité de moduler la morphogenèse de façon indépendante de sa fonction de déglycosylation. La caractérisation du premier déficit en PNGase devrait apporter une meilleure compréhension du rôle de cette enzyme multifonctionnelle dans la physiologie humaine

    Contrasted patterns of selective pressure in three recent paralogous gene pairs in the <it>Medicago</it> genus (L.)

    No full text
    Abstract Background Gene duplications are a molecular mechanism potentially mediating generation of functional novelty. However, the probabilities of maintenance and functional divergence of duplicated genes are shaped by selective pressures acting on gene copies immediately after the duplication event. The ratio of non-synonymous to synonymous substitution rates in protein-coding sequences provides a means to investigate selective pressures based on genic sequences. Three molecular signatures can reveal early stages of functional divergence between gene copies: change in the level of purifying selection between paralogous genes, occurrence of positive selection, and transient relaxed purifying selection following gene duplication. We studied three pairs of genes that are known to be involved in an interaction with symbiotic bacteria and were recently duplicated in the history of the Medicago genus (Fabaceae). We sequenced two pairs of polygalacturonase genes (Pg11-Pg3 and Pg11a-Pg11c) and one pair of auxine transporter-like genes (Lax2-Lax4) in 17 species belonging to the Medicago genus, and sought for molecular signatures of differentiation between copies. Results Selective histories revealed by these three signatures of molecular differentiation were found to be markedly different between each pair of paralogs. We found sites under positive selection in the Pg11 paralogs while Pg3 has mainly evolved under purifying selection. The most recent paralogs examined Pg11a and Pg11c, are both undergoing positive selection and might be acquiring new functions. Lax2 and Lax4 paralogs are both under strong purifying selection, but still underwent a temporary relaxation of purifying selection immediately after duplication. Conclusions This study illustrates the variety of selective pressures undergone by duplicated genes and the effect of age of the duplication. We found that relaxation of selective constraints immediately after duplication might promote adaptive divergence.</p
    corecore