165 research outputs found

    Neuroinflammation: From Molecular Basis to Therapy

    Get PDF
    : Neuroinflammatory conditions in the central nervous system (CNS) are implicated in the pathogenesis of several neuroimmune disorders such as acquired demyelinating syndromes, autoimmune encephalopathies, acute or chronic bacterial and viral CNS infections as well as multiple sclerosis (MS) [...]

    The Underestimated Role of Iron in Frontotemporal Dementia: A Narrative Review

    Get PDF
    : The term frontotemporal dementia (FTD) comprises a group of neurodegenerative disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain with language impairment and changes in cognitive, behavioral and executive functions, and in some cases motor manifestations. A high proportion of FTD cases are due to genetic mutations and inherited in an autosomal-dominant manner with variable penetrance depending on the implicated gene. Iron is a crucial microelement that is involved in several cellular essential functions in the whole body and plays additional specialized roles in the central nervous system (CNS) mainly through its redox-cycling properties. Such a feature may be harmful under aerobic conditions, since it may lead to the generation of highly reactive hydroxyl radicals. Dysfunctions of iron homeostasis in the CNS are indeed involved in several neurodegenerative disorders, although it is still challenging to determine whether the dyshomeostasis of this essential but harmful metal is a direct cause of neurodegeneration, a contributor factor or simply a consequence of other neurodegenerative mechanisms. Unlike many other neurodegenerative disorders, evidence of the dysfunction in brain iron homeostasis in FTD is still scarce; nonetheless, the recent literature intriguingly suggests its possible involvement. The present review aims to summarize what is currently known about the contribution of iron dyshomeostasis in FTD based on clinical, imaging, histological, biochemical and molecular studies, further suggesting new perspectives and offering new insights for future investigations on this underexplored field of research

    Potential Diagnostic Role of Hepcidin in Anemic Patients Affected by Inflammatory Bowel Disease: A Systematic Review.

    Get PDF
    Abstract: Background: Anemia is the main extraintestinal comorbidity of Inflammatory Bowel Disease (IBD). Differentiating the type of anemia in these disorders is still a challenge. Hepcidin could be a promising biomarker to identify iron deficiency anemia (IDA), anemia of chronic disease (ACD) and the concomitant presence of both IDA and ACD. Methods: To evaluate the potential role of hepcidin dosage in the management of anemia in IBD patients, we performed a systematic review by a comprehensive literature analysis of original papers report-ing the dosage of hepcidin in IBD patients. In all the articles reviewed, the dosage of ferritin was reported, and the correlation between hepcidin and ferritin has been used to compare these two biomarkers. Results: A total of 12 articles concerning the dosage of hepcidin in IBD were included, comprising in total of 976 patients. The results of the hepcidin values in IBD patients when com-pared with controls were conflicting. In fact, four articles described an increase in this biomarker, three showed a decrease and five did not find significant differences. The correlation with ferritin was positive and significant. In three studies, some differences between hepcidin dosages and fer-ritin levels indicate a possible role when IDA and ACD could be present at the same time. Conclu-sions: Considering the contradictory data of the studies, the diagnostic role of hepcidin as a bi-omarker remains elusive in IBD patients. These differences could be due to the clinical characteris-tics of the patients enrolled that should be better defined in the future. A suitable clinical trial should be designed to outline the possible role of hepcidin in differentiating IDA, ACD and con-comitant IDA and ACD in IBD patients. At the moment, ferritin still remains the best marker to diagnose these conditions, in addition to hemoglobin, transferrin saturation and CRP as recom-mended by the ECCO guidelines

    Cabotegravir Exposure of Zebrafish (Danio rerio) Embryos Impacts on Neurodevelopment and Behavior

    Get PDF
    As most new medications, Cabotegravir (CAB) was recently approved as an antiretroviral treatment of HIV infection without in-depth safety information on in utero exposure. Although no developmental toxicity in rats and rabbits was reported, recent studies demonstrated that CAB decreases pluripotency of human embryonic stem cells. CAB exposure effects during development were assessed in zebrafish embryos by the Fish Embryo Toxicity test after exposure at subtherapeutic concentrations up to 25x the human C-max. Larvae behavior was assessed by the light-dark locomotion test. The expression of factors involved in neurogenesis was evaluated by whole-mount in situ hybridization. CAB did not cause gross morphological defects at low doses, although pericardial edema, uninflated swim bladder, decreased heartbeats, growth delay, and decreased hatching rate were observed at the highest concentrations. Decreased locomotion was observed even at the subtherapeutic dose, suggesting alterations of nervous system integrity. This hypothesis was supported by the observation of decreased expression of crucial factors involved in early neuronal differentiation in diencephalic and telencephalic dopaminergic areas, midbrain/hindbrain boundary, and craniofacial ganglia. These findings support CAB effects on neurogenesis in zebrafish embryos and suggest long-term follow-up of exposed infants to provide data on drug safety during pregnancy

    Super-lattice effects in ordered core-shell nanorod arrays detected by Raman spectroscopy

    Get PDF
    We studied the optical phonon excitations (LO) of ordered arrays of dot/ rod core-shell CdSe/ CdS nanorods by Raman spectroscopy. Upon deposition on planar substrates the nanorods formed super-lattice structures via side-by side assembly into tracks over some microns of length. COMSOL Multiphysics software has been used to calculate the magnitude of the electric field generated by the interaction of an incident electromagnetic wave with an array of CdSe/CdS nanorods. In particular two configurations were considered: i) localized charges in the nanorods; ii) no localized charges in the nanorods. To this purpose a 2D model has been implemented and simulations have been performed for both polarizations of the incident electromagnetic field. Multiphysical characteristics of COMSOL have been exploited as the simulation relied on a two-steps process. First, localized charges have been set-up near the CdSe cores to mimic the promotions of electrons and an electrostatic simulation was launched. Second, the calculated electric displacement field was used to modify materials conductivity and thus the interaction with the impinging electromagnetic wave

    Comparison of Efavirenz and Doravirine Developmental Toxicity in an Embryo Animal Model

    Get PDF
    : In the past, one of the most widely used non-nucleoside reverse transcriptase inhibitors (NNRTI) in first-line antiretroviral therapy (ART) of HIV infection was efavirenz (EFV), which is already used as a cost-effective treatment in developing countries due to its efficacy, tolerability, and availability. However, EFV also demonstrates several adverse effects, like hepatotoxicity, altered lipid profile, neuropsychological symptoms, and behavioral effects in children after in utero exposure. In 2018, another NNRTI, doravirine (DOR), was approved due to its similar efficacy but better safety profile. Preclinical safety studies demonstrated that DOR is not genotoxic and exhibits no developmental toxicity or effects on fertility in rats. Zebrafish (Danio rerio) embryos have been widely accepted as a vertebrate model for pharmacological and developmental studies. We used zebrafish embryos as an in vivo model to investigate the developmental toxicity of DOR compared to EFV. After exposure of the embryos to the drugs from the gastrula stage up to different developmental stages (30 embryos for each arm, in three independent experiments), we assessed their survival, morphology, hatching rate, apoptosis in the developing head, locomotion behavior, vasculature development, and neutral lipid distribution. Overall, DOR showed a better safety profile than EFV in our model. Therapeutic and supra-therapeutic doses of DOR induced very low mortality [survival rates: 92, 90, 88, 88, and 81% at 1, 5, 10, 25, and 50 μM, respectively, at 24 h post fecundation (hpf), and 88, 85, 88, 89, and 75% at the same doses, respectively, at 48 hpf] and mild morphological alterations compared to EFV exposure also in the sub-therapeutic ranges (survival rates: 80, 77, 69, 63, and 44% at 1, 5, 10, 25, and 50 μM, respectively, at 24 hpf and 72, 70, 63, 52, and 0% at the same doses, respectively, at 48 hpf). Further, DOR only slightly affected the hatching rate at supra-therapeutic doses (97, 98, 96, 87, and 83% at 1, 5, 10, 25, and 50 μM, respectively, at 72 hpf), while EFV already strongly reduced hatching at sub-therapeutic doses (83, 49, 11, 0, and 0% at 1, 5, 10, 25, and 50 μM, respectively, at the same time endpoint). Both DOR at therapeutic doses and most severely EFV at sub-therapeutic doses enhanced apoptosis in the developing head during crucial phases of embryo neurodevelopment and perturbed the locomotor behavior. Furthermore, EFV strongly affected angiogenesis and disturbed neutral lipid homeostasis even at sub-therapeutic doses compared to DOR at therapeutic concentrations. Our findings in zebrafish embryos add further data confirming the higher safety of DOR with respect to EFV regarding embryo development, neurogenesis, angiogenesis, and lipid metabolism. Further studies are needed to explore the molecular mechanisms underlying the better pharmacological safety profile of DOR, and further human studies are required to confirm these results in the zebrafish animal model

    Dolutegravir and Folic Acid Interaction during Neural System Development in Zebrafish Embryos

    Get PDF
    : Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 μM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways

    The impact of antiretroviral therapy on iron homeostasis and inflammation markers in HIV-infected patients with mild anemia

    Get PDF
    BACKGROUND: Anemia is frequent during HIV infection and is predictive of mortality. Although cART has demonstrated to reduce its prevalence, several patients still experience unresolved anemia. We aimed to characterize iron homeostasis and inflammation in HIV-infected individuals with mild anemia in relation to cART. METHODS: In this retrospective cohort study, HIV-infected patients with mild anemia, CD4+ cells > 200/mm3 at baseline, maintaining virological response for 12 months after cART starting were selected within the Standardized Management of Antiretroviral Therapy Cohort (MASTER) cohort. Several inflammation and immune activation markers and iron homeostasis indexes were measured in stored samples, obtained at cART initiation (T0) and 12 months later (T1). Patients were grouped on the basis of hemoglobin values at T1: group A (> 13 g/dl) and B (< 13 g/dl). Wilcoxon rank sum test was used to compare biomarker values. Pearson correlation coefficients were calculated for all variables. RESULTS: cART improved CD4+ and CD8+ cell counts and their ratio, but this effect was significant only in group A. Only these patients had mild iron deficiency at T0 and showed higher transferrin and lower percentage of transferrin saturation than patients of group B, but differences disappeared with cART. cART decreased inflammation in all patients, but group B had higher levels of all markers than group A, reaching statistical significance only for IL-8 values at T1 (16 vs 2.9 pg/ml; p = 0.017). Hepcidin and IL-6 levels did not show significant differences between groups. Hemoglobin levels both at T0 and T1 did not correlate with any marker. CONCLUSIONS: Baseline mild anemia in HIV-infected patients cannot always be resolved with durable efficient cART, possibly due to residual inflammation or immune activation rather than unbalanced iron homeostasis. Further research is needed on cytokine profiling to understand the mechanisms that induce anemia in HIV with suppressive cART
    corecore