20 research outputs found

    Probing carrier dynamics in photo-excited graphene with time-resolved ARPES

    Full text link
    The dynamics of photo-generated electron-hole pairs in solids are dictated by many-body interactions such as electron-electron and electron-phonon scattering. Hence, understanding and controlling these scattering channels is crucial for many optoelectronic applications, ranging from light harvesting to optical amplification. Here we measure the formation and relaxation of the photo-generated non-thermal carrier distribution in monolayer graphene with time- and angle-resolved photoemission spectroscopy. Using sub 10fs pulses we identify impact ionization as the primary scattering channel, which dominates the dynamics for the first 25fs after photo-excitation. Auger recombination is found to set in once the carriers have accumulated at the Dirac point with time scales between 100 and 250fs, depending on the number of non-thermal carriers. Our observations help in gauging graphene's potential as a solar cell and TeraHertz lasing material.Comment: 10 pages, 4 figure

    Investigation of Two-Dimensional Electron Gases with Angular Resolved Photoemission Spectroscopy

    Get PDF
    In this thesis we study the electronic structure of different two-dimensional (2D) electron systems with angular resolved photoemission spectroscopy (ARPES). This technique is based on the photoelectric effect and directly probes the electronic structure of a system. By carefully analyzing the measured band structure with respect to peak position and line width we can determine the complex self-energy Σ that describes the renormalization of the electron's energy and the change in lifetime due to many-body interactions. The 2D electron systems investigated in this work are surface alloys on Ag(111), bismuth trimers on Si(111) and epitaxial graphene monolayers grown on SiC(0001). Surface alloys on Ag(111) are formed by depositing 1/3 of a monolayer of bismuth, lead or antimony (alloy atoms) on the clean silver surface. Although (Bi,Pb,Sb) and Ag atoms are immiscible in the bulk they form long-range ordered surface alloys, where every third Ag atom is replaced by an alloy atom. These systems as well as the Bi trimers on Si(111) show a spin splitting of the 2D band structure due to the Rashba-Bychkov (RB) effect. The RB model states that in a symmetry broken environment (such as the surface of a semi-infinite crystal) the spin-orbit interaction will lift the spin-degeneracy of the band structure. Such a spin-split band structure bares great potential for applications in the field of spintronics, e.g. in a Datta-Das spin field effect transistor. In the present work we investigate the origin of the observed giant spin splitting in surface alloys, especially the interplay between structural parameters and the atomic spin-orbit interaction. Furthermore, we will show that it is possible to transfer these concepts to a semiconducting substrate, which is better suited for spintronics applications. The third system under investigation — graphene — is an ideally two-dimensional crystal. It consists of a single layer of carbon atoms arranged in a honeycomb lattice, and its charge carriers are confined within a plane that is just one atom thick. These charge carriers behave like massless Dirac particles and possess extremely high carrier mobilities. This makes graphene a promising material system for high-speed electronic devices. In order to reach this ambitious goal one needs reliable methods for the large-scale production of high quality graphene films. Epitaxial growth on silicon carbide (0001) substrates is the method of choice in this case, as it offers the advantage of a precise thickness control and a semiconducting substrate at the same time. However, the presence of the substrate reduces the carrier mobility of graphene's charge carriers considerably. Therefore, it is necessary to decouple the graphene layer from the substrate after epitaxial growth. A second issue that needs to be addressed, are viable doping methods for graphene. As graphene's peculiar band structure results from a sensible interplay between electrons and crystal lattice it is not an option to replace single atoms of the graphene lattice by dopants as is common practice when doping silicon. In order to preserve its band structure, graphene is usually doped by adsorbing atoms or molecules on its surface. As graphene grown on SiC is n-doped due to charge transfer from the substrate, appropriate means for p-type doping are clearly required. In this thesis, we will present a new growth method for quasi free-standing graphene on SiC(0001) and viable means for p-type doping

    Illuminating the dark corridor in graphene: polarization dependence of angle-resolved photoemission spectroscopy on graphene

    Full text link
    We have used s- and p-polarized synchrotron radiation to image the electronic structure of epitaxial graphene near the K-point by angular resolved photoemission spectroscopy (ARPES). Part of the experimental Fermi surface is suppressed due to the interference of photoelectrons emitted from the two equivalent carbon atoms per unit cell of graphene's honeycomb lattice. Here we show that by rotating the polarization vector, we are able to illuminate this 'dark corridor' indicating that the present theoretical understanding is oversimplified. Our measurements are supported by first-principles photoemission calculations, which reveal that the observed effect persists in the low photon energy regime.Comment: 5 pages, 4 figure

    Population Inversion in Monolayer and Bilayer Graphene

    Get PDF
    The recent demonstration of saturable absorption and negative optical conductivity in the Terahertz range in graphene has opened up new opportunities for optoelectronic applications based on this and other low dimensional materials. Recently, population inversion across the Dirac point has been observed directly by time- and angle-resolved photoemission spectroscopy (tr-ARPES), revealing a relaxation time of only ~ 130 femtoseconds. This severely limits the applicability of single layer graphene to, for example, Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived population inversion in bilayer graphene. The effect is attributed to the small band gap found in this compound. We propose a microscopic model for these observations and speculate that an enhancement of both the pump photon energy and the pump fluence may further increase this lifetime.Comment: 18 pages, 6 figure

    Electronic decoupling of an epitaxial graphene monolayer by gold intercalation

    Full text link
    The application of graphene in electronic devices requires large scale epitaxial growth. The presence of the substrate, however, usually reduces the charge carrier mobility considerably. We show that it is possible to decouple the partially sp3-hybridized first graphitic layer formed on the Si-terminated face of silicon carbide from the substrate by gold intercalation, leading to a completely sp2-hybridized graphene layer with improved electronic properties.Comment: 7 pages, 4 figures, 1 tabl

    Phonon-pump XUV-photoemission-probe in graphene: evidence for non-adiabatic heating of Dirac carriers by lattice deformation

    Get PDF
    We modulate the atomic structure of bilayer graphene by driving its lattice at resonance with the in-plane E1u lattice vibration at 6.3um. Using time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultra-violet (XUV) pulses, we measure the response of the Dirac electrons near the K-point. We observe that lattice modulation causes anomalous carrier dynamics, with the Dirac electrons reaching lower peak temperatures and relaxing at faster rate compared to when the excitation is applied away from the phonon resonance or in monolayer samples. Frozen phonon calculations predict dramatic band structure changes when the E1u vibration is driven, which we use to explain the anomalous dynamics observed in the experiment.Comment: 16 pages, 8 figure

    Snapshots of non-equilibrium Dirac carrier distributions in graphene

    Full text link
    The optical properties of graphene are made unique by the linear band structure and the vanishing density of states at the Dirac point. It has been proposed that even in the absence of a semiconducting bandgap, a relaxation bottleneck at the Dirac point may allow for population inversion and lasing at arbitrarily long wavelengths. Furthermore, efficient carrier multiplication by impact ionization has been discussed in the context of light harvesting applications. However, all these effects are difficult to test quantitatively by measuring the transient optical properties alone, as these only indirectly reflect the energy and momentum dependent carrier distributions. Here, we use time- and angle-resolved photoemission spectroscopy with femtosecond extreme ultra-violet (EUV) pulses at 31.5 eV photon energy to directly probe the non-equilibrium response of Dirac electrons near the K-point of the Brillouin zone. In lightly hole-doped epitaxial graphene samples, we explore excitation in the mid- and near-infrared, both below and above the minimum photon energy for direct interband transitions. While excitation in the mid-infrared results only in heating of the equilibrium carrier distribution, interband excitations give rise to population inversion, suggesting that terahertz lasing may be possible. However, in neither excitation regime do we find indication for carrier multiplication, questioning the applicability of graphene for light harvesting. Time-resolved photoemission spectroscopy in the EUV emerges as the technique of choice to assess the suitability of new materials for optoelectronics, providing quantitatively accurate measurements of non-equilibrium carriers at all energies and wavevectors.Comment: 16 pages, 7 figure

    Link between interlayer hybridization and ultrafast charge transfer in WS2_2-graphene heterostructures

    Get PDF
    Ultrafast charge separation after photoexcitation is a common phenomenon in various van-der-Waals (vdW) heterostructures with great relevance for future applications in light harvesting and detection. Theoretical understanding of this phenomenon converges towards a coherent mechanism through charge transfer states accompanied by energy dissipation into strongly coupled phonons. The detailed microscopic pathways are material specific as they sensitively depend on the band structures of the individual layers, the relative band alignment in the heterostructure, the twist angle between the layers, and interlayer interactions resulting in hybridization. We used time- and angle-resolved photoemission spectroscopy combined with tight binding and density functional theory electronic structure calculations to investigate ultrafast charge separation and recombination in WS2_2-graphene vdW heterostructures. We identify several avoided crossings in the band structure and discuss their relevance for ultrafast charge transfer. We relate our own observations to existing theoretical models and propose a unified picture for ultrafast charge transfer in vdW heterostructures where band alignment and twist angle emerge as the most important control parameters.Comment: 8 pages, 5 figure

    Link between interlayer hybridization and ultrafast charge transfer in WS2-graphene heterostructures

    Get PDF
    Ultrafast charge separation after photoexcitation is a common phenomenon in various van-der-Waals (vdW) heterostructures with great relevance for future applications in light harvesting and detection. Theoretical understanding of this phenomenon converges towards a coherent mechanism through charge transfer states accompanied by energy dissipation into strongly coupled phonons. The detailed microscopic pathways are material specific as they sensitively depend on the band structures of the individual layers, the relative band alignment in the heterostructure, the twist angle between the layers, and interlayer interactions resulting in hybridization. We used time- and angle-resolved photoemission spectroscopy combined with tight binding and density functional theory electronic structure calculations to investigate ultrafast charge separation and recombination in WS2-graphene vdW heterostructures. We identify several avoided crossings in the band structure and discuss their relevance for ultrafast charge transfer. We relate our own observations to existing theoretical models and propose a unified picture for ultrafast charge transfer in vdW heterostructures where band alignment and twist angle emerge as the most important control parameters
    corecore