29 research outputs found

    Recruitment of the Extracellular Signal-Regulated Kinase/Ribosomal S6 Kinase Signaling Pathway to the NFATc4 Transcription Activation Complex

    No full text
    Integration of protein kinases into transcription activation complexes influences the magnitude of gene expression. The nuclear factor of activated T cells (NFAT) group of proteins are critical transcription factors that direct gene expression in immune and nonimmune cells. A balance of phosphotransferase activity is necessary for optimal NFAT activation. Activation of NFAT requires dephosphorylation by the calcium-mediated calcineurin phosphatase to promote NFAT nuclear accumulation, and the Ras-activated extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase, which targets NFAT partners, to potentiate transcription. Whether protein kinases operate on NFAT and contribute positively to transcription activation is not clear. Here, we coupled DNA affinity isolation with in-gel kinase assays to avidly pull down the activated NFAT and identify its associated protein kinases. We demonstrate that p90 ribosomal S6 kinase (RSK) is recruited to the NFAT-DNA transcription complex upon activation. The formation of RSK-NFATc4-DNA transcription complex is also apparent upon adipogenesis. Bound RSK phosphorylates Ser(676) and potentiates NFATc4 DNA binding by escalating NFAT-DNA association. Ser(676) is also targeted by the ERK MAP kinase, which interacts with NFAT at a distinct region than RSK. Thus, integration of the ERK/RSK signaling pathway provides a mechanism to modulate NFATc4 transcription activity

    Reverse Signaling by Semaphorin-6A Regulates Cellular Aggregation and Neuronal Morphology.

    No full text
    The transmembrane semaphorin, Sema6A, has important roles in axon guidance, cell migration and neuronal connectivity in multiple regions of the nervous system, mediated by context-dependent interactions with plexin receptors, PlxnA2 and PlxnA4. Here, we demonstrate that Sema6A can also signal cell-autonomously, in two modes, constitutively, or in response to higher-order clustering mediated by either PlxnA2-binding or chemically induced multimerisation. Sema6A activation stimulates recruitment of Abl to the cytoplasmic domain of Sema6A and phos¡phorylation of this cytoplasmic tyrosine kinase, as well as phosphorylation of additional cytoskeletal regulators. Sema6A reverse signaling affects the surface area and cellular complexity of non-neuronal cells and aggregation and neurite formation of primary neurons in vitro. Sema6A also interacts with PlxnA2 in cis, which reduces binding by PlxnA2 of Sema6A in trans but not vice versa. These experiments reveal the complex nature of Sema6A biochemical functions and the molecular logic of the context-dependent interactions between Sema6A and PlxnA2

    Regulation of Dendritic Development by Neuron-Specific Chromatin Remodeling Complexes

    Get PDF
    SummaryThe diversity of dendritic patterns is one of the fundamental characteristics of neurons and is in part regulated by transcriptional programs initiated by electrical activity. We show that dendritic outgrowth requires a family of combinatorially assembled, neuron-specific chromatin remodeling complexes (nBAF complexes) distinguished by the actin-related protein BAF53b and based on the Brg/Brm ATPases. nBAF complexes bind tightly to the Ca2+-responsive dendritic regulator CREST and directly regulate genes essential for dendritic outgrowth. BAF53b is not required for nBAF complex assembly or the interaction with CREST, yet is required for their recruitment to the promoters of specific target genes. The highly homologous BAF53a protein, which is a component of neural progenitor and nonneural BAF complexes, cannot replace BAF53b's role in dendritic development. Remarkably, we find that this functional specificity is conferred by the actin fold subdomain 2 of BAF53b. These studies suggest that the genes encoding the individual subunits of BAF complexes function like letters in a ten-letter word to produce biologically specific meanings (in this case dendritic outgrowth) by combinatorial assembly of their products

    A Field of Myocardial-Endocardial NFAT Signaling Underlies Heart Valve Morphogenesis

    Get PDF
    AbstractThe delicate leaflets that make up vertebrate heart valves are essential for our moment-to-moment existence. Abnormalities of valve formation are the most common serious human congenital defect. Despite their importance, relatively little is known about valve development. We show that the initiation of heart valve morphogenesis in mice requires calcineurin/NFAT to repress VEGF expression in the myocardium underlying the site of prospective valve formation. This repression of VEGF at E9 is essential for endocardial cells to transform into mesenchymal cells. Later, at E11, a second wave of calcineurin/NFAT signaling is required in the endocardium, adjacent to the earlier myocardial site of NFAT action, to direct valvular elongation and refinement. Thus, NFAT signaling functions sequentially from myocardium to endocardium within a valvular morphogenetic field to initiate and perpetuate embryonic valve formation. This mechanism also operates in zebrafish, indicating a conserved role for calcineurin/NFAT signaling in vertebrate heart valve morphogenesis
    corecore