156 research outputs found

    Phonics, the systematic-synthetic method as a tool for the acquisition of english phonetics

    Get PDF
    Las políticas europeas fijaron en el plurilingüismo un objetivo estratégico claro para la creación de las infraestructuras de la sociedad del conocimiento (Consejo Europeo, 2000). El sistema educativo y de formación español, en consonancia, ha venido desarrollando un proceso sostenido de ampliación de la enseñanza de la segunda lengua, materializado en medidas como su implantación en el segundo ciclo de la Educación Infantil (Real Decreto 1630/2006) o la inmersión en los programas de plurilingüismo en las diversas etapas educativas, recogidos en la LOE y la LOMCE y desarrollados en la legislativa regional de las distintas comunidades autónomas. Todas estas acciones se realizan en un contexto de modernización de las escuelas y cambio de paradigma docente que, en este caso, implica la preponderancia de los procesos de adquisición sobre los de aprendizaje (Ellis, 1997) y por tanto de las destrezas orales sobre las escritas (Nunan, 2004). Nuestra propuesta pondera el impacto de los métodos sistemático-sintéticos o de phonics en esta adquisición de la competencia comunicativa en lengua inglesa, en materia fonética y de transferencia del lenguaje para la lectoescritura. Para ello se analizan sus características a la luz de los métodos naturales surgidos a partir de las teorías de Krashen (2002), de las habilidades prelectoras (Fonseca Mora y Martín-Pulido, 2015) y las características cognitivas en el segundo ciclo de Educación Infantil y primeros cursos de Educación Primaria para señalar las ventajas e inconvenientes de su implantación dentro de las metodologías de los centros escolares en las citadas etapas.European educational policies have set plurilingualism as a strategic priority for the construction of knowledge society (European Council, 2000). The Spanish educational and lifelong learning systems have consequently developed strategies for the expansion of English language learning which have materialized in measures such as its inclusion in the second cycle of Early Childhood Education (2-to-5-year-old children) (Real Decreto 1630/2006), or the immersion and plurilingual programs for the different educational stages, as stated in the LOE and LOMCE educational laws, further developed in regional legislation. All these actions are part of a process of modernization of schools and of a change in the teaching paradigm which, in this case, implies the preponderance of the process of acquisition over that of learning (Ellis, 1997) and, therefore, of oral skills over written ones (Nunan, 2004). This paper analyses the impact of the systematic-synthetic method better known as phonics in the process of acquisition of the communicative competence in English, focusing on aspects such as phonological attainment and linguistic transfer as applied to literacy. In order to do so, the characteristics of this method are revised in the light of the natural methods arising from the theories of Krashen (2002), of pre-reading skills (Fonseca Mora y Martín-Pulido, 2015) and of the cognitive characteristics of the pupils in pre-primary and early primary school years, so as to point to the advantages and drawbacks of its implementation in these educational stage

    Calculation of threshold Olsen P values for fertilizer response from soil properties

    Get PDF
    Phosphorus (P), a non-renewable resource, needs to be used more efficiently in agriculture. This requires using soil P tests. However, the P test threshold values for fertilizer response depend on many soil properties, some of which may be useful to estimate these threshold values, others not. Therefore, we searched here which soil properties are useful to estimate P threshold values. We calculated the threshold values for Olsen P and 0.01 M CaCl2 extractable P of 18 representative agricultural soils of the Mediterranean region of Spain. For that, we performed a P starvation experiment in which wheat and sunflower were alternatively pot-cropped. Results show that Olsen P threshold values are negatively correlated to P buffer capacity (r of −0.74, P lower than 0.001), clay content (−0.82, 0.001), pH (−0.76, 0.001), and Fe oxide content (−0.55, 0.05). Multiple regression models involving clay, pH or soil organic C, and phosphatase activity or organic hydrolysable P accounted for as much as 87 % of the variance in calculated Olsen P threshold values. In particular, there is a major effect of organic P on Olsen P threshold values. Single models based on routinely measured soil properties such as clay content and pH made accurate predictions of Olsen P threshold values with r 2 of 0.81 and P lower than 0.001

    Morphology, Crystallinity, and Molecular Weight of Poly(E-caprolactone)/Graphene Oxide Hybrids

    Full text link
    [EN] A study was carried out to determine the effects of graphene oxide (GO) filler on the properties of poly(epsilon-caprolactone) (PCL) films. A series of nanocomposites were prepared, incorporating different graphene oxide filler contents (0.1, 0.2, and 0.5 wt%) by the solution mixing method, and an in-depth study was made of the morphological changes, crystallization, infrared absorbance, molecular weight, thermal properties, and biocompatibility as a function of GO content to determine their suitability for use in biomedical applications. The infrared absorbance showed the existence of intermolecular hydrogen bonds between the PCL's carbonyl groups and the GO's hydrogen-donating groups, which is in line with the apparent reduction in molecular weight at higher GO contents, indicated by the results of the gel permeation chromatography (GPC), and the thermal property analysis. Polarized optical microscopy (POM) showed that GO acts as a nucleating point for PCL crystals, increasing crystallinity and crystallization temperature. The biological properties of the composites studied indicate that adding only 0.1 wt% of GO can improve cellular viability and that the composite shows promise for use in biomedical applications.This work was supported by Projects GV/2016/067 of the Generalitat Valenciana and MAT2016-76039-C4-3-R of the Spanish Ministry of Economy and Competitiveness (MINECO). The authors are grateful to M. Monleon-Pradas for his helpful comments and G. Vilarino-Feltrer for his valuable advice on the cell culture experiments. A. Vidaurre would also like to express her gratitude for the support received from CIBER-BBN, an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. SEM, TEM and AFM were conducted by the authors at the Microscopy Service of the Universitat Politecnica de Valencia, whose advice is greatly appreciated.Castilla Cortázar, MIC.; Vidaurre, A.; Marí, B.; Campillo Fernandez, AJ. (2019). Morphology, Crystallinity, and Molecular Weight of Poly(E-caprolactone)/Graphene Oxide Hybrids. Polymers. 11(7):1-19. https://doi.org/10.3390/polym11071099S119117Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44(15), 3342-3347. doi:10.1016/j.carbon.2006.06.004Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103gKonios, D., Stylianakis, M. M., Stratakis, E., & Kymakis, E. (2014). Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 430, 108-112. doi:10.1016/j.jcis.2014.05.033Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350-1375. doi:10.1016/j.progpolymsci.2010.07.005Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., & Chen, Y. (2009). Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials, 19(14), 2297-2302. doi:10.1002/adfm.200801776Han, D., Yan, L., Chen, W., & Li, W. (2011). Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers, 83(2), 653-658. doi:10.1016/j.carbpol.2010.08.038Luong, N. D., Hippi, U., Korhonen, J. T., Soininen, A. J., Ruokolainen, J., Johansson, L.-S., … Seppälä, J. (2011). Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer, 52(23), 5237-5242. doi:10.1016/j.polymer.2011.09.033Yang, X., Tu, Y., Li, L., Shang, S., & Tao, X. (2010). Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Applied Materials & Interfaces, 2(6), 1707-1713. doi:10.1021/am100222mSalavagione, H. J., Gómez, M. A., & Martínez, G. (2009). Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol). Macromolecules, 42(17), 6331-6334. doi:10.1021/ma900845wXu, Z., & Gao, C. (2010). In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules, 43(16), 6716-6723. doi:10.1021/ma1009337Kulkarni, D. D., Choi, I., Singamaneni, S. S., & Tsukruk, V. V. (2010). Graphene Oxide−Polyelectrolyte Nanomembranes. ACS Nano, 4(8), 4667-4676. doi:10.1021/nn101204dBao, C., Guo, Y., Song, L., & Hu, Y. (2011). Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. Journal of Materials Chemistry, 21(36), 13942. doi:10.1039/c1jm11662bTang, L.-C., Wan, Y.-J., Yan, D., Pei, Y.-B., Zhao, L., Li, Y.-B., … Lai, G.-Q. (2013). The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 60, 16-27. doi:10.1016/j.carbon.2013.03.050Song, Y. S., & Youn, J. R. (2005). Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43(7), 1378-1385. doi:10.1016/j.carbon.2005.01.007Kim, H., Miura, Y., & Macosko, C. W. (2010). Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials, 22(11), 3441-3450. doi:10.1021/cm100477vAhmad, H., Fan, M., & Hui, D. (2018). Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering, 145, 270-280. doi:10.1016/j.compositesb.2018.02.006Kai, W., Hirota, Y., Hua, L., & Inoue, Y. (2007). Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite. Journal of Applied Polymer Science, 107(3), 1395-1400. doi:10.1002/app.27210Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Wan, C., & Chen, B. (2011). Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity. Biomedical Materials, 6(5), 055010. doi:10.1088/1748-6041/6/5/055010Song, J., Gao, H., Zhu, G., Cao, X., Shi, X., & Wang, Y. (2015). The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon, 95, 1039-1050. doi:10.1016/j.carbon.2015.09.011Hua, L., Kai, W. H., & Inoue, Y. (2007). Crystallization behavior of poly(ϵ-caprolactone)/graphite oxide composites. Journal of Applied Polymer Science, 106(6), 4225-4232. doi:10.1002/app.26976Sayyar, S., Murray, E., Thompson, B. C., Gambhir, S., Officer, D. L., & Wallace, G. G. (2013). Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon, 52, 296-304. doi:10.1016/j.carbon.2012.09.031Murray, E., Sayyar, S., Thompson, B. C., Gorkin III, R., Officer, D. L., & Wallace, G. G. (2015). A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Advances, 5(56), 45284-45290. doi:10.1039/c5ra07210gHassanzadeh, S., Adolfsson, K. H., Wu, D., & Hakkarainen, M. (2015). Supramolecular Assembly of Biobased Graphene Oxide Quantum Dots Controls the Morphology of and Induces Mineralization on Poly(ε-caprolactone) Films. Biomacromolecules, 17(1), 256-261. doi:10.1021/acs.biomac.5b01339Kumar, S., Azam, D., Raj, S., Kolanthai, E., Vasu, K. S., Sood, A. K., & Chatterjee, K. (2015). 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(4), 732-749. doi:10.1002/jbm.b.33549Shin, S. R., Li, Y.-C., Jang, H. L., Khoshakhlagh, P., Akbari, M., Nasajpour, A., … Khademhosseini, A. (2016). Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 105, 255-274. doi:10.1016/j.addr.2016.03.007Bianco, A. (2013). Graphene: Safe or Toxic? The Two Faces of the Medal. Angewandte Chemie International Edition, 52(19), 4986-4997. doi:10.1002/anie.201209099Zhang, X., Yin, J., Peng, C., Hu, W., Zhu, Z., Li, W., … Huang, Q. (2011). Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 49(3), 986-995. doi:10.1016/j.carbon.2010.11.005Jasim, D. A., Murphy, S., Newman, L., Mironov, A., Prestat, E., McCaffrey, J., … Kostarelos, K. (2016). The Effects of Extensive Glomerular Filtration of Thin Graphene Oxide Sheets on Kidney Physiology. ACS Nano, 10(12), 10753-10767. doi:10.1021/acsnano.6b03358Santos, C. M., Mangadlao, J., Ahmed, F., Leon, A., Advincula, R. C., & Rodrigues, D. F. (2012). Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology, 23(39), 395101. doi:10.1088/0957-4484/23/39/395101Lim, H. N., Huang, N. M., & Loo, C. H. (2012). Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. Journal of Non-Crystalline Solids, 358(3), 525-530. doi:10.1016/j.jnoncrysol.2011.11.007Some, S., Ho, S.-M., Dua, P., Hwang, E., Shin, Y. H., Yoo, H., … Lee, H. (2012). Dual Functions of Highly Potent Graphene Derivative–Poly-l-Lysine Composites To Inhibit Bacteria and Support Human Cells. ACS Nano, 6(8), 7151-7161. doi:10.1021/nn302215ySydlik, S. A., Jhunjhunwala, S., Webber, M. J., Anderson, D. G., & Langer, R. (2015). In Vivo Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano, 9(4), 3866-3874. doi:10.1021/acsnano.5b01290Crescenzi, V., Manzini, G., Calzolari, G., & Borri, C. (1972). Thermodynamics of fusion of poly-β-propiolactone and poly-ϵ-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. European Polymer Journal, 8(3), 449-463. doi:10.1016/0014-3057(72)90109-7Luo, H., Meng, X., Cheng, C., Dong, Z., Zhang, S., & Li, B. (2010). Enzymatic Degradation of Supramolecular Materials Based on Partial Inclusion Complex Formation between α-Cyclodextrin and Poly(ε-caprolactone). The Journal of Physical Chemistry B, 114(13), 4739-4745. doi:10.1021/jp1001836Vidaurre, A., Dueñas, J. M. M., Estellés, J. M., & Cortázar, I. C. (2008). Influence of Enzymatic Degradation on Physical Properties of Poly(ε-caprolactone) Films and Sponges. Macromolecular Symposia, 269(1), 38-46. doi:10.1002/masy.200850907Honma, T., Senda, T., & Inoue, Y. (2003). Thermal properties and crystallization behaviour of blends of poly(?-caprolactone) with chitin and chitosan. Polymer International, 52(12), 1839-1846. doi:10.1002/pi.1380Ramazani, S., & Karimi, M. (2015). Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Materials Science and Engineering: C, 56, 325-334. doi:10.1016/j.msec.2015.06.045Coleman, M. M., & Zarian, J. (1979). Fourier-transform infrared studies of polymer blends. II. Poly(ε-caprolactone)–poly(vinyl chloride) system. Journal of Polymer Science: Polymer Physics Edition, 17(5), 837-850. doi:10.1002/pol.1979.180170509Huang, Y., Xu, Z., Huang, Y., Ma, D., Yang, J., & Mays, J. W. (2003). Characterization of Poly(ε-Caprolactone) via Size Exclusion Chromatography with Online Right-Angle Laser-Light Scattering and Viscometric Detectors. International Journal of Polymer Analysis and Characterization, 8(6), 383-394. doi:10.1080/714975019Sharaf, M. A., Kloczkowski, A., Sen, T. Z., Jacob, K. I., & Mark, J. E. (2006). Filler-induced deformations of amorphous polyethylene chains. The effects of the deformations on elastomeric properties, and some comparisons with experiments. European Polymer Journal, 42(4), 796-806. doi:10.1016/j.eurpolymj.2005.10.009Nusser, K., Neueder, S., Schneider, G. J., Meyer, M., Pyckhout-Hintzen, W., Willner, L., … Richter, D. (2010). Conformations of Silica−Poly(ethylene−propylene) Nanocomposites. Macromolecules, 43(23), 9837-9847. doi:10.1021/ma101898cVacatello, M. (2002). Chain Dimensions in Filled Polymers:  An Intriguing Problem. Macromolecules, 35(21), 8191-8193. doi:10.1021/ma020416sDuan, T., Lv, Y., Xu, H., Jin, J., & Wang, Z. (2018). Structural Effects of Residual Groups of Graphene Oxide on Poly(ε-Caprolactone)/Graphene Oxide Nanocomposite. Crystals, 8(7), 270. doi:10.3390/cryst8070270Wang, G., Wei, Z., Sang, L., Chen, G., Zhang, W., Dong, X., & Qi, M. (2013). Morphology, crystallization and mechanical properties of poly(ɛ-caprolactone)/graphene oxide nanocomposites. Chinese Journal of Polymer Science, 31(8), 1148-1160. doi:10.1007/s10118-013-1278-8Balkova, R., Hermanova, S., Voberkova, S., Damborsky, P., Richtera, L., Omelkova, J., & Jancar, J. (2013). Structure and Morphology of Microbial Degraded Poly(ε-caprolactone)/Graphite Oxide Composite. Journal of Polymers and the Environment, 22(2), 190-199. doi:10.1007/s10924-013-0630-yYıldırım, S., Demirtaş, T. T., Dinçer, C. A., Yıldız, N., & Karakeçili, A. (2018). Preparation of polycaprolactone/graphene oxide scaffolds: A green route combining supercritial CO2 technology and porogen leaching. The Journal of Supercritical Fluids, 133, 156-162. doi:10.1016/j.supflu.2017.10.009Peng, H., Han, Y., Liu, T., Tjiu, W. C., & He, C. (2010). Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 502(1-2), 1-7. doi:10.1016/j.tca.2010.01.009Michailidis, M., Verros, G. D., Deliyanni, E. A., Andriotis, E. G., & Achilias, D. S. (2017). An experimental and theoretical study of butyl methacrylatein situradical polymerization kinetics in the presence of graphene oxide nanoadditive. Journal of Polymer Science Part A: Polymer Chemistry, 55(8), 1433-1441. doi:10.1002/pola.28512Tsagkalias, I., Manios, T., & Achilias, D. (2017). Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique. Polymers, 9(9), 432. doi:10.3390/polym9090432Geng, L.-H., Peng, X.-F., Jing, X., Li, L.-W., Huang, A., Xu, B.-P., … Mi, H.-Y. (2016). Investigation of poly(l-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. Journal of Materials Research, 31(3), 348-359. doi:10.1557/jmr.2016.13Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., & Fu, S. (2011). Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18), 4001-4010. doi:10.1016/j.polymer.2011.06.045Bao, C., Guo, Y., Song, L., Kan, Y., Qian, X., & Hu, Y. (2011). In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. Journal of Materials Chemistry, 21(35), 13290. doi:10.1039/c1jm11434dSánchez-Correa, F., Vidaurre-Agut, C., Serrano-Aroca, Á., & Campillo-Fernández, A. J. (2017). Poly(2-hydroxyethyl acrylate) hydrogels reinforced with graphene oxide: Remarkable improvement of water diffusion and mechanical properties. Journal of Applied Polymer Science, 135(15), 46158. doi:10.1002/app.46158Liao, K.-H., Lin, Y.-S., Macosko, C. W., & Haynes, C. L. (2011). Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Applied Materials & Interfaces, 3(7), 2607-2615. doi:10.1021/am200428

    Experimental Type 2 Diabetes Induces Enzymatic Changes in Isolated Rat Enterocytes

    Get PDF
    Diabetes in humans and in experimental animals produces changes in the function and structure of the small intestine. The authors determined the activity of intestinal disaccharidases (maltase and sucrase) and of 6-phosphofructo-1-kinase (PFK-1) in enterocytes isolated from the small intestine of male Wistar rats (2.5 to 3 months old) with experimental nonobese type 2 diabetes, induced by streptozotocin (STZ) injection on the day of birth (n0-STZ) or on the 5th day of life (n5-STZ), with different degrees of hyperglycemia and insulinemia (n0-STZ and n5-STZ models). The glycemia (mmol/L) of the diabetic rats (n0-STZ: 8.77 ± 0.47; n5-STZ: 20.83 ± 0.63) was higher (P < .01) than that of the nondiabetic (ND) rats (5.99 ± 0.63); on the contrary, the insulinemia (ng/mL) was significantly lower in both n0-STZ (1.74 ± 0.53; P < .05) and n5-STZ (1.12 ± 0.44; P < .01) diabetic rats than in normal rats (3.77 ± 0.22). The sucrase and maltase activities (U/g protein) in diabetic rats (n0-STZ: 89 ± 9 and 266 ± 12; n5-STZ: 142 ± 23 and 451 ± 57) were significantly higher than those in the ND group (66 ± 5 and 228 ± 22). The PFK-1 activities (mU/mg protein) in the diabetic models (n0-STZ: 14.89 ± 1.51; n5-STZ: 13.35 ± 3.12) were significantly lower (P < .05) than in ND rats (20.54 ± 2.83). The data demonstrated enzymatic alterations in enterocytes isolated fromthe small intestine of n0-STZ rats that are greater (P < .05) than in the more hyperglycemic and hypoinsulinemic n5-STZ animals. The results also show that nonobese type 2–like diabetes in the rat produces modifications that favor an increase in glucose absorption rates

    Revista Fuentes

    Get PDF
    Resumen basado en el de la publicaciónMonográfico con el título: “Enseñanza de segundas lenguas (L2/LE): tendencias docentes e investigadoras”Título, resumen y palabras clave también en inglésEl sistema educativo y de formación español, ha venido desarrollando un proceso sostenido de ampliación de la enseñanza de la segunda lengua, materializado en medidas como la implantación en el segundo ciclo de la Educación Infantil (Real Decreto 1630/2006) o la inmersión en los programas de plurilingüismo en las diversas etapas educativas, recogidos en la LOE (Ley Orgánica de Educación) y la LOMCE (Ley Orgánica para la Mejora de la Calidad Educativa) y desarrollados en la legislativa regional de las distintas Comunidades Autónomas. Todas las acciones se realizan en un contexto de modernización de las escuelas y cambio de paradigma docente que, implica la preponderancia de los procesos de adquisición sobre los de aprendizaje (Ellis, 1997) y por tanto de las destrezas orales sobre las escritas (Nunan, 1995). La propuesta pondera el impacto de los métodos sistemático-sintéticos o de Phonics en la adquisición de la competencia comunicativa en lengua inglesa, en materia fonética y de transferencia del lenguaje para la lectoescritura. Se analizan las características de los métodos naturales surgidos a partir de las teorías de Krashen (2002), de las habilidades prelectoras (Fonseca Mora y Martín-Pulido, 2015) y las características cognitivas en el segundo ciclo de Educación Infantil y primeros cursos de Educación Primaria para señalar las ventajas e inconvenientes de la implantación dentro de las metodologías de los centros escolares.ES

    Telephone Interpreting and Professional Practice. A Case Study of Two Companies Providing the Service in Spain

    Get PDF
    La interpretación telefónica es una modalidad que está cada vez más presente en los servicios públicos en España dadas las ventajas que ofrece, entre las que se pueden mencionar: el reducido coste, la disponibilidad inmediata, el anonimato, etc. Como consecuencia de esta mayor presencia en el ámbito profesional, también en los últimos años la interpretación telefónica ha sido objeto de investigaciones y estudios científicos (Rosenberg 2007, Kelly 2008, Fernández Pérez 2012 y 2015, entre otros). En el presente artículo se realiza, en primer lugar, una revisión de la literatura científica centrada en este tema y, posteriormente, un análisis de las pautas profesionales establecidas por las dos principales empresas que ofrecen este servicio en España. Finalmente, se reflexiona sobre el grado de convergencia entre los trazos de la interpretación telefónica que se señalan en la literatura científica revisada y las pautas profesionales establecidas por las empresas analizadas.Telephone interpreting is increasingly used in public services in Spain due to the advantages it provides, among which the most remarkable are: low cost, immediate availability, anonymity, etc. As a consequence of this rising presence, telephone interpreting has become the object of scientific research and studies in the past years (Rosenberg 2007, Kelly 2008, Fernández Pérez 2012 and 2015, among others). This article reviews the scientific literature on this topic and analyses the professional guidelines provided by the two main companies providing this service in Spain. Lastly, the degree of convergence between the characteristics of telephone interpreting depicted in the reviewed bibliography and the professional guidelines of the analysed companies is described

    Challenge- Based Learning design in higher education: A new context for learning beyond competency approach

    Get PDF
    With this project we want to respond to the main challenge faced by higher education that is overcoming the gap between university education and the demands of society and the professional world. This gap cannot be accounted for merely in terms of a shortcoming in the relationship between the competencies of academic programmes and the real training needs of lifelong learners, but also involves the mismatch between the design of training models and students' expectations.Con este proyecto queremos responder al principal desafío que enfrenta la educación superior que está superando la brecha entre la educación universitaria y las demandas de la sociedad y el mundo profesional. Esta brecha no puede ser contada simplemente en términos de una deficiencia en la relación entre las competencias de los programas académicos y las necesidades reales de capacitación de los estudiantes de por vida, pero también implica la falta de correspondencia entre el diseño de modelos de capacitación y las expectativas de los estudiantes.Amb aquest projecte volem respondre al principal desafiament que enfronta l'educació superior que està superant la bretxa entre l'educació universitària i les demandes de la societat i el món professional. Aquesta bretxa no pot ser explicada simplement en termes d'una deficiència en la relació entre les competències dels programes acadèmics i les necessitats reals de capacitació dels estudiants per a tota la vida, però també implica la falta de correspondència entre el disseny de models de capacitació i les expectatives dels estudiants

    A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values

    Full text link
    The present paper studies the effect of pH on hydrolytic degradation of Poly(&#949;-aprolactone) (PCL) Degradation of the films was performed at 37 C in 2.5 M NaOH solution (pH 13) and 2.5 M HCl solution (pH 1). Weight loss, degree of swelling, molecular weight, and calorimetric and mechanical properties were obtained as a function of degradation time. Morphological changes in the samples were carefully studied through electron microscopy. At the start of the process the degradation rate of PCL films at pH 13 was faster than at pH 1. In the latter case, there was an induction period of around 300 h with no changes in weight loss or swelling rate, but there were drastic changes in molecular weight and crystallinity. The changes in some properties throughout the degradation period, such as crystallinity, molecular weight and Young s modulus were lower in degradations at higher pH, highlighting differences in the degradation mechanism of alkaline and acid hydrolysis. Along with visual inspection of the degraded samples, this suggests a surface degradation at pH 13, whereas bulk degradation may occur at pH 1.The authors would like to acknowledge the support of the Spanish Ministry of Science and Education through the MAT2013-46467-C4-1-R Project. A. Vidaurre would also like to acknowledge the support from CIBER-BBN, an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Sailema-Palate, GP.; Vidaurre Garayo, AJ.; Campillo Fernández, AJ.; Castilla Cortázar, MIC. (2016). A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values. Polymer Degradation and Stability. 130:118-125. https://doi.org/10.1016/j.polymdegradstab.2016.06.005S11812513

    Materials Science Toolkit for Carbon Footprint Assessment: A Case Study for Endoscopic Accessories of Common Use

    Full text link
    [EN] Ironically, healthcare systems are key agents in respiratory-related diseases and estimated deaths because of the high impact of their greenhouse gas emissions, along with industry, transportation, and housing. Based on safety requirements, hospitals and related services use an extensive number of consumables, most of which end up incinerated at the end of their life cycle. A thorough assessment of the carbon footprint of such devices typically requires knowing precise information about the manufacturing process, rarely available in detail because of the many materials, pieces and steps involved during the fabrication. And yet, tools most often used for determining the environmental impact of consumer goods just require a bunch of parameters, mainly based on the material composition of the device. Here we report a basic set of analytical methods that provide the information required by the software OpenLCA to calculate the main outcome related to environmental impact, the greenhouse gas emissions. Through thermogravimetry, calorimetry, infrared spectroscopy and elemental analysis we proved that obtaining relevant data for the calculator in the exemplifying case of endoscopy tooling or accessories is possible. This routine procedure opens the door to a broader, more accurate analysis of the environmental impact of everyday work at hospital services, offering potential alternatives to minimize it.This study has been funded by Instituto de Salud Carlos III (ISCIII) through the project PI21/00193 and cofunded by the European Union. Funding: Instituto de Salud Carlos III (ISCIII), PI21/00193, cofunded by the European Union. And through the project PI2023-6 from UPV-LaFe innovation projects.Martín-Cabezuelo, R.; Vilariño-Feltrer, G.; Campillo Fernandez, AJ.; Lorenzo-Zúñiga, V.; Pons, V.; López-Muñoz, P.; Tort-Ausina, I. (2023). Materials Science Toolkit for Carbon Footprint Assessment: A Case Study for Endoscopic Accessories of Common Use. ACS Environmental Au. https://doi.org/10.1021/acsenvironau.3c0004
    corecore