5 research outputs found

    Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults

    Get PDF
    Introduction: The aim of this study was to develop consensus recommendations on safety parameters for mobilizing adult, mechanically ventilated, intensive care unit (ICU) patients. Methods: A systematic literature review was followed by a meeting of 23 multidisciplinary ICU experts to seek consensus regarding the safe mobilization of mechanically ventilated patients. Results: Safety considerations were summarized in four categories: respiratory, cardiovascular, neurological and other. Consensus was achieved on all criteria for safe mobilization, with the exception being levels of vasoactive agents. Intubation via an endotracheal tube was not a contraindication to early mobilization and a fraction of inspired oxygen less than 0.6 with a percutaneous oxygen saturation more than 90% and a respiratory rate less than 30 breaths/minute were considered safe criteria for in- and out-of-bed mobilization if there were no other contraindications. At an international meeting, 94 multidisciplinary ICU clinicians concurred with the proposed recommendations. Conclusion: Consensus recommendations regarding safety criteria for mobilization of adult, mechanically ventilated patients in the ICU have the potential to guide ICU rehabilitation whilst minimizing the risk of adverse events

    Inspiratory muscle training to enhance recovery from mechanical ventilation: A randomised trial

    Get PDF
    Background In patients who have been mechanically ventilated, inspiratory muscles remain weak and fatigable following ventilatory weaning, which may contribute to dyspnoea and limited functional recovery. Inspiratory muscle training may improve inspiratory muscle strength and endurance following weaning, potentially improving dyspnoea and quality of life in this patient group

    Monitoring and Controlling Intramedullary Pressure Increase in Long Bone Instrumentation: A Study on Sheep

    No full text
    Intramedullary reamed nailing causes elevation in intramedullary pressure and extravazation of intramedullary contents into the venous blood system. This study investigated the effect of an intramedullary suction system, recently developed in our laboratory, on the pressure and fat extravazation in isolated bovine bone and a sheep model. During reaming, the pressure with and without suction was recorded at each step of the procedure. Hemodynamic parameters of mean arterial blood pressure, pulmonary artery pressure, pulmonary arterial CO2 (PaCO2), heart rate, and oxygen saturation were monitored. Blood and lung tissue samples were collected for the examination of medullary fat intravazation. The increases of intramedullary pressure were dramatically reduced in the suction group (p < 0.05) in both in vitro and in vivo experiments. PaCO2 was significantly lower in the suction group than nonsuction group (32 vs. 40 mmHg, respectively, p = 0.02), while oxygen saturation was higher in the suction group (99 vs. 91 mmHg, respectively, p = 0.009). Histological data revealed a significant higher count of fat emboli in sheep lung tissue in the nonsuction group. Total lipids in lung specimens was lower in the suction group (7.6 mg/g tissue) than in the nonsuction group (13.6 mg/g, p = 0.04). The suction system appears to control the surge in intramedullary pressure and therefore prevent fat embolism
    corecore