3,707 research outputs found

    Transonic turbine blade cascade testing facility

    Get PDF
    NASA LeRC has designed and constructed a new state-of-the-art test facility. This facility, the Transonic Turbine Blade Cascade, is used to evaluate the aerodynamics and heat transfer characteristics of blade geometries for future turbine applications. The facility's capabilities make it unique: no other facility of its kind can combine the high degree of airflow turning, infinitely adjustable incidence angle, and high transonic flow rates. The facility air supply and exhaust pressures are controllable to 16.5 psia and 2 psia, respectively. The inlet air temperatures are at ambient conditions. The facility is equipped with a programmable logic controller with a capacity of 128 input/output channels. The data acquisition system is capable of scanning up to 1750 channels per sec. This paper discusses in detail the capabilities of the facility, overall facility design, instrumentation used in the facility, and the data acquisition system. Actual research data is not discussed

    Structure and phase boundaries of compressed liquid hydrogen

    Full text link
    We have mapped the molecular-atomic transition in liquid hydrogen using first principles molecular dynamics. We predict that a molecular phase with short-range orientational order exists at pressures above 100 GPa. The presence of this ordering and the structure emerging near the dissociation transition provide an explanation for the sharpness of the molecular-atomic crossover and the concurrent pressure drop at high pressures. Our findings have non-trivial implications for simulations of hydrogen; previous equation of state data for the molecular liquid may require revision. Arguments for the possibility of a 1st1^{st} order liquid-liquid transition are discussed

    Standardization and application of microsatellite markers for variety identification in tomato and wheat

    Get PDF
    The present study is part of a EU project that aims to demonstrate the technical viability of STMS markers for variety identification. As examples two important European crop species, tomato and wheat were chosen. Initially, about 30-40 STMS markers were used to identify a set of 20 good markers per crop and to standardise the methodology and the interpretation of the results in different laboratories. Several systems were used for the detection of STMS polymorphisms. The selected STMS markers are being tested on 500 varieties of each species and databases are being constructed. The first comparisons of data generated by the different laboratories revealed a high degree of agreement. The causes of discrepancies between duplicate samples analysed in different laboratories and precautions to prevent them, are discussed

    Universal Baxterization for Z\mathbb{Z}-graded Hopf algebras

    Full text link
    We present a method for Baxterizing solutions of the constant Yang-Baxter equation associated with Z\mathbb{Z}-graded Hopf algebras. To demonstrate the approach, we provide examples for the Taft algebras and the quantum group Uq[sl(2)]U_q[sl(2)].Comment: 8 page

    Density Waves Inside Inner Lindblad Resonance: Nuclear Spirals in Disk Galaxies

    Get PDF
    We analyze formation of grand-design two-arm spiral structure in the nuclear regions of disk galaxies. Such morphology has been recently detected in a number of objects using high-resolution near-infrared observations. Motivated by the observed (1) continuity between the nuclear and kpc-scale spiral structures, and by (2) low arm-interarm contrast, we apply the density wave theory to explain the basic properties of the spiral nuclear morphology. In particular, we address the mechanism for the formation, maintenance and the detailed shape of nuclear spirals. We find, that the latter depends mostly on the shape of the underlying gravitational potential and the sound speed in the gas. Detection of nuclear spiral arms provides diagnostics of mass distribution within the central kpc of disk galaxies. Our results are supported by 2D numerical simulations of gas response to the background gravitational potential of a barred stellar disk. We investigate the parameter space allowed for the formation of nuclear spirals using a new method for constructing a gravitational potential in a barred galaxy, where positions of resonances are prescribed.Comment: 18 pages, 9 figures, higher resolution available at http://www.pa.uky.edu/~ppe/papers/nucsp.ps.g

    Cavity approach for real variables on diluted graphs and application to synchronization in small-world lattices

    Full text link
    We study XY spin systems on small world lattices for a variety of graph structures, e.g. Poisson and scale-free, superimposed upon a one dimensional chain. In order to solve this model we extend the cavity method in the one pure-state approximation to deal with real-valued dynamical variables. We find that small-world architectures significantly enlarge the region in parameter space where synchronization occurs. We contrast the results of population dynamics performed on a truncated set of cavity fields with Monte Carlo simulations and find excellent agreement. Further, we investigate the appearance of replica symmetry breaking in the spin-glass phase by numerically analyzing the proliferation of pure states in the message passing equations.Comment: 10 pages, 3 figure

    Framework for classifying logical operators in stabilizer codes

    Full text link
    Entanglement, as studied in quantum information science, and non-local quantum correlations, as studied in condensed matter physics, are fundamentally akin to each other. However, their relationship is often hard to quantify due to the lack of a general approach to study both on the same footing. In particular, while entanglement and non-local correlations are properties of states, both arise from symmetries of global operators that commute with the system Hamiltonian. Here, we introduce a framework for completely classifying the local and non-local properties of all such global operators, given the Hamiltonian and a bi-partitioning of the system. This framework is limited to descriptions based on stabilizer quantum codes, but may be generalized. We illustrate the use of this framework to study entanglement and non-local correlations by analyzing global symmetries in topological order, distribution of entanglement and entanglement entropy.Comment: 20 pages, 9 figure

    In-vivo Antiplasmodial Activity of Crude n-hexane and Ethanolic Extracts of Moringa oleifera (LAM.) Seeds on Plasmodium berghei

    Get PDF
    Studies were carried out to determine the antiplasmodial activity of crude n-hexane and ethanolic seed extracts of Moringa oleifera using cold extraction method. Twenty-four albino mice (Mus musculus) induced intraperitoneally with chloroquine sensitive Plasmodium berghei strain were divided into 4 groups and treated at three concentrations viz: 50, 100 and 200 ml/kg. Positive control was set up with chloroquine diphosphate while negative control was set up with olive oil. The mice models were treated for 72 h. For the ethanolic extract, a parasite inhibition rate of 61% was observed at concentration 50 ml/kg, 65% at concentration 100 ml/kg and 100% at concentration 200 ml/kg in day 3 after treatment. In n-hexane extract of the seeds of M. oleifera, plasmodial inhibition rate of 61% was observed at concentration 50 ml/kg, 70% at concentration 100 ml/kg and 97% at concentration 200 ml/kg after treatment for 72 h. A 100% inhibition rate was observed for mice treated with 25 mg/kg of standard chloroquine diphosphate after day 3 of treatment while parasitaemia increased from 48 on day 0 to 86 after day 3 for mice treated with olive oil. Overall, crude ethanolic extract of M. oleifera seed showed higher parasite inhibition activity than the crude n-hexane extrac
    • …
    corecore