4,179 research outputs found

    Low voltage control of ferromagnetism in a semiconductor p-n junction

    Full text link
    The concept of low-voltage depletion and accumulation of electron charge in semiconductors, utilized in field-effect transistors (FETs), is one of the cornerstones of current information processing technologies. Spintronics which is based on manipulating the collective state of electron spins in a ferromagnet provides complementary technologies for reading magnetic bits or for the solid-state memories. The integration of these two distinct areas of microelectronics in one physical element, with a potentially major impact on the power consumption and scalability of future devices, requires to find efficient means for controlling magnetization electrically. Current induced magnetization switching phenomena represent a promising step towards this goal, however, they relay on relatively large current densities. The direct approach of controlling the magnetization by low-voltage charge depletion effects is seemingly unfeasible as the two worlds of semiconductors and metal ferromagnets are separated by many orders of magnitude in their typical carrier concentrations. Here we demonstrate that this concept is viable by reporting persistent magnetization switchings induced by short electrical pulses of a few volts in an all-semiconductor, ferromagnetic p-n junction.Comment: 11 pages, 4 figure

    Geometric frustration and concerted migration in the superionic conductor barium hydride

    Get PDF
    Authors would like to thank the ISIS Facility Development Studentship for funding this work. Additionally, I would like to thank ISIS Neutron and Muon Source for providing the beam time to collect all the scattering data presented in this paper. Finally, I would like to thank the Crockett Scholarship for supporting my studies. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any Accepted Author Manuscript version arising.Ionic conductivity is a phenomenon of great interest, not least because of its application in advanced electrochemical devices such as batteries and fuel cells. While lithium, sodium, and oxide fast ion conductors have been the subjects of much study, the advent of hydride (H–) ion fast conductors opens up new windows in the understanding of fast ion conduction due to the fundamental simplicity of the H– ion consisting of just two electrons and one proton. Here we probe the nature of fast ion conduction in the hydride ion conductor, barium hydride (BaH2). Unusually for a fast ion conductor, this material has a structure based upon a close-packed hexagonal lattice, with important analogues such as BaF2 and Li2S. We elucidate how the structure of the high temperature phase of BaH2 results in a disordered hydride sublattice. Furthermore, using novel combined quasi-elastic neutron scattering (QENS) and electrochemical impedance spectroscopy (EIS) we show how the high energy ions interact to create a concerted migration that results in macroscopic superionic conductivity via an interstitialcy mechanism.Publisher PDFPeer reviewe

    Realisation of Hardy's Thought Experiment

    Full text link
    We present an experimental realisation of Hardy's thought experiment [Phys. Rev. Lett. {\bf 68}, 2981 (1992)], using photons. The experiment consists of a pair of Mach-Zehnder interferometers that interact through photon bunching at a beam splitter. A striking contradiction is created between the predictions of quantum mechanics and local hidden variable based theories. The contradiction relies on non-maximally entangled position states of two particles.Comment: 5 page

    Projected free energies for polydisperse phase equilibria

    Full text link
    A `polydisperse' system has an infinite number of conserved densities. We give a rational procedure for projecting its infinite-dimensional free energy surface onto a subspace comprising a finite number of linear combinations of densities (`moments'), in which the phase behavior is then found as usual. If the excess free energy of the system depends only on the moments used, exact cloud, shadow and spinodal curves result; two- and multi-phase regions are approximate, but refinable indefinitely by adding extra moments. The approach is computationally robust and gives new geometrical insights into the thermodynamics of polydispersity.Comment: 4 pages, REVTeX, uses multicol.sty and epsf.sty, 1 postscript figure include

    Development and testing of impregnated La0.20Sr0.25Ca0.45TiO3 anode microstructures for solid oxide fuel cells

    Get PDF
    Funding: EPSRC project EP/M014304/1 “Tailoring of Microstructural Evolution in Impregnated SOFC Electrodes”, the University of St Andrews and HEXIS AG.The A-site deficient perovskite: La0.20Sr0.25Ca0.45TiO3 (LSCTA-) is a mixed ionic and electronic conductor (MIEC) which shows promising performance as a Solid Oxide Fuel Cell (SOFC) anode ‘backbone’ material, when impregnated with metallic and oxide-ion conducting electrocatalysts. Here, we present data on the complete ceramic processing and optimisation of the LSCTA- ‘backbone’ microstructure, in order to improve current distribution throughout the anode. Through control of ink rheology, screen printing parameters and sintering protocol an advantageous LSCTA- microstructural architecture was developed, exhibiting an ‘effective’ conductivity of 21 S cm-1. Incorporation of this LSCTA- anode microstructure into SOFC and impregnation with Ce0.80Gd0.20O1.9 and either Ni, Ru, Rh, Pt or Pd resulted in promising initial performances during fuel cell testing in a fuel stream of 97% H2:3% H2O. Area Specific Resistances of 0.41 Ω cm2 and 0.39 Ω cm2 were achieved with anodes containing Rh/CGO and Pd/CGO, respectively.Postprin

    Development and testing of impregnated La0.20Sr0.25Ca0.45TiO3 anode microstructures for solid oxide fuel cells

    Get PDF
    Funding: EPSRC project EP/M014304/1 “Tailoring of Microstructural Evolution in Impregnated SOFC Electrodes”, the University of St Andrews and HEXIS AG.The A-site deficient perovskite: La0.20Sr0.25Ca0.45TiO3 (LSCTA-) is a mixed ionic and electronic conductor (MIEC) which shows promising performance as a Solid Oxide Fuel Cell (SOFC) anode ‘backbone’ material, when impregnated with metallic and oxide-ion conducting electrocatalysts. Here, we present data on the complete ceramic processing and optimisation of the LSCTA- ‘backbone’ microstructure, in order to improve current distribution throughout the anode. Through control of ink rheology, screen printing parameters and sintering protocol an advantageous LSCTA- microstructural architecture was developed, exhibiting an ‘effective’ conductivity of 21 S cm-1. Incorporation of this LSCTA- anode microstructure into SOFC and impregnation with Ce0.80Gd0.20O1.9 and either Ni, Ru, Rh, Pt or Pd resulted in promising initial performances during fuel cell testing in a fuel stream of 97% H2:3% H2O. Area Specific Resistances of 0.41 Ω cm2 and 0.39 Ω cm2 were achieved with anodes containing Rh/CGO and Pd/CGO, respectively.Postprin

    Photo-catalytic hydrogen production over Au/g-C3N4:effect of gold particle dispersion and morphology

    Get PDF
    Metal/semiconductor interactions affect electron transfer rates and this is central to photocatalytic hydrogen ion reduction. While this interaction has been studied in great detail on metal oxide semiconductors, not much is known of Au particles on top of polymeric semiconductors. The effects of gold nanoparticle size and dispersion on top of g-C3N4 were studied by core and valence level spectroscopy and transmission electron microscopy in addition to catalytic tests. The as-prepared, non-calcined catalysts displayed Au particles with uniform dimension (mean particle size = 1.8 nm) and multiple electronic states: XPS Au 4f7/2 lines at 84.9 and 87.1 eV (each with a spin–orbit splitting of 3.6–3.7 eV). These particles, which did not show localized surface plasmon resonance (LSPR), before the reaction, doubled in size after the reaction giving a pronounced LSPR at about 550 nm. The effect of the heating environment on these particles (in air or in H2) was further investigated. While heating in H2 gave Au nanoparticles of different shapes, heating under O2 gave exclusively spherical particles. Similar activity towards photocatalytic hydrogen ion reduction under UV excitation was seen in both cases, however. XPS Au 4f analyses indicated that an increase in deposition time, during catalyst preparation, resulted in an increase in the initial fraction of oxidized gold particles, which were easily reduced under hydrogen. The valence band region for Au/gC3N4 was further studied in an effort to compare it to what is already known for Au/metal oxide semiconductors. A shift of over 2 eV for the Au 5d doublets was noticed between reduced and oxidized gold particles with mean particle sizes between 2 and 6 nm, which is consistent with the final state effect. A narrow range of gold loading for optimal catalytic performance was seen, where it seems that a density of one Au particle per 10 × 10 nm2 is the most suitable. Particle size and shape had a minor effect on performance, which may indicate the absence of a plasmonic effect on the reaction rate.Publisher PDFPeer reviewe

    Manipulating O3/P2 phase ratio in bi-phasic sodium layered oxides via ionic radius control

    Get PDF
    Funding: This work was supported by the Faraday Institution (Grant number FIRG018). The authors would like to thank Dr. David Rochester at Lancaster University for conducting the ICP-OES experiments. A.B.N. would like to acknowledge funding by the Engineering and Physical Sciences Research Council under grant numbers EP/L017008/1, EP/R023751/1, and EP/T019298/1 for the electron microscopy analysis.Bi-phasic O3/P2 sodium layered oxides have emerged as leading candidates for the commercialisation of next-generation sodium-ion batteries. However, beyond simply altering the sodium content, rational control of the O3/P2 ratio in these materials has proven particularly challenging despite being crucial for the realization of high-performance electrode materials. Here, using abundant elements, we manipulate the O3/P2 ratio using the average ionic radius of the transition metal layer and different synthesis conditions. These methods allow deterministic control over the O3/P2 ratio, even for constant Na contents. In addition, tuning the O3/P2 ratio yields high-performing materials with different performance characteristics, with a P2-rich material achieving high rate capabilities and excellent cycling stability (92% retention, 50 cycles), while an O3-rich material displayed an energy density up to 430 Wh kg−1, (85%, 50 cycles). These insights will help guide the rational design of future high-performance materials for sodium-ion batteries.Publisher PDFPeer reviewe
    corecore