8 research outputs found

    CRONOS: the cross-reference navigation server

    Get PDF
    Summary: Cross-mapping of gene and protein identifiers between different databases is a tedious and time-consuming task. To overcome this, we developed CRONOS, a cross-reference server that contains entries from five mammalian organisms presented by major gene and protein information resources. Sequence similarity analysis of the mapped entries shows that the cross-references are highly accurate. In total, up to 18 different identifier types can be used for identification of cross-references. The quality of the mapping could be improved substantially by exclusion of ambiguous gene and protein names which were manually validated. Organism-specific lists of ambiguous terms, which are valuable for a variety of bioinformatics applications like text mining are available for download

    The Mouse Functional Genome Database (MfunGD): functional annotation of proteins in the light of their cellular context

    Get PDF
    MfunGD () provides a resource for annotated mouse proteins and their occurrence in protein networks. Manual annotation concentrates on proteins which are found to interact physically with other proteins. Accordingly, manually curated information from a protein–protein interaction database (MPPI) and a database of mammalian protein complexes is interconnected with MfunGD. Protein function annotation is performed using the Functional Catalogue (FunCat) annotation scheme which is widely used for the analysis of protein networks. The dataset is also supplemented with information about the literature that was used in the annotation process as well as links to the SIMAP Fasta database, the Pedant protein analysis system and cross-references to external resources. Proteins that so far were not manually inspected are annotated automatically by a graphical probabilistic model and/or superparamagnetic clustering. The database is continuously expanding to include the rapidly growing amount of functional information about gene products from mouse. MfunGD is implemented in GenRE, a J2EE-based component-oriented multi-tier architecture following the separation of concern principle

    CORUM: the comprehensive resource of mammalian protein complexes—2009

    Get PDF
    CORUM is a database that provides a manually curated repository of experimentally characterized protein complexes from mammalian organisms, mainly human (64%), mouse (16%) and rat (12%). Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The new CORUM 2.0 release encompasses 2837 protein complexes offering the largest and most comprehensive publicly available dataset of mammalian protein complexes. The CORUM dataset is built from 3198 different genes, representing ∼16% of the protein coding genes in humans. Each protein complex is described by a protein complex name, subunit composition, function as well as the literature reference that characterizes the respective protein complex. Recent developments include mapping of functional annotation to Gene Ontology terms as well as cross-references to Entrez Gene identifiers. In addition, a ‘Phylogenetic Conservation’ analysis tool was implemented that analyses the potential occurrence of orthologous protein complex subunits in mammals and other selected groups of organisms. This allows one to predict the occurrence of protein complexes in different phylogenetic groups. CORUM is freely accessible at (http://mips.helmholtz-muenchen.de/genre/proj/corum/index.html)

    Improvement of myocardial infarction risk prediction via inflammation-associated metabolite biomarkers

    No full text
    OBJECTIVE: The comprehensive assaying of low-molecular-weight compounds, for example, metabolomics, provides a unique tool to uncover novel biomarkers and understand pathways underlying myocardial infarction (MI). We used a targeted metabolomics approach to identify biomarkers for MI and evaluate their involvement in the pathogenesis of MI. METHODS AND RESULTS: Using three independent, prospective cohorts (KORA S4, KORA S2 and AGES-REFINE), totalling 2257 participants without a history of MI at baseline, we identified metabolites associated with incident MI (266 cases). We also investigated the association between the metabolites and high-sensitivity C reactive protein (hsCRP) to understand the relation between these metabolites and systemic inflammation. Out of 140 metabolites, 16 were nominally associated (p<0.05) with incident MI in KORA S4. Three metabolites, arginine and two lysophosphatidylcholines (LPC 17:0 and LPC 18:2), were selected as biomarkers via a backward stepwise selection procedure in the KORA S4 and were significant (p<0.0003) in a meta-analysis comprising all three studies including KORA S2 and AGES-REFINE. Furthermore, these three metabolites increased the predictive value of the Framingham risk score, increasing the area under the receiver operating characteristic score in KORA S4 (from 0.70 to 0.78, p=0.001) and AGES-REFINE study (from 0.70 to 0.76, p=0.02), but was not observed in KORA S2. The metabolite biomarkers attenuated the association between hsCRP and MI, indicating a potential link to systemic inflammatory processes. CONCLUSIONS: We identified three metabolite biomarkers, which in combination increase the predictive value of the Framingham risk score. The attenuation of the hsCRP-MI association by these three metabolites indicates a potential link to systemic inflammation
    corecore