5 research outputs found

    Using Natural Variation to Investigate the Function of Individual Amino Acids in the Sucrose-Binding Box of Fructan:Fructan 6G-Fructosyltransferase (6G-FFT) in Product Formation

    Get PDF
    Enzymes of the glycosyl hydrolase family 32 are highly similar with respect to primary sequence but catalyze divergent reactions. Previously, the importance of the conserved sucrose-binding box in determining product specificity of onion fructan:fructan 6G-fructosyltransferase (6G-FFT) was established [Ritsema etal., 2004, Plant Mol. Biol. 54: 853-863]. Onion 6G-FFT synthesizes the complex fructan neo-series inulin by transferring fructose residues to either a terminal fructose or a terminal glucose residue. In the present study we have elucidated the molecular determinants of product specificity by substitution of individual amino acids of the sucrose binding box with amino acids that are present on homologous positions in other fructosyltransferases or vacuolar invertases. Substituting the presumed nucleophile Asp85 of the β-fructosidase motif resulted in an inactive enzyme. 6G-FFT mutants S87N and S87D did not change substrate or product specificities, whereas mutants N84Y and N84G resulted in an inactive enzyme. Most interestingly, mutants N84S, N84A, and N84Q added fructose residues preferably to a terminal fructose and hardly to the terminal glucose. This resulted in the preferential production of inulin-type fructans. Combining mutations showed that amino acid 84 determines product specificity of 6G-FFT irrespective of the amino acid at position 8

    Fructan: More Than a Reserve Carbohydrate?

    No full text

    Transcriptional and posttranscriptional silencing are mechanistically related

    No full text
    Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1-4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter
    corecore